6,484 research outputs found

    CO adsorption on Pt induced Ge nanowires

    Full text link
    Using density functional theory, we investigate the possible adsorption sites of CO molecules on the recently discovered Pt induced Ge nanowires on Ge(001). Calculated STM images are compared to experimental STM images to identify the experimentally observed adsorption sites. The CO molecules are found to adsorb preferably onto the Pt atoms between the Ge nanowire dimer segments. This adsorption site places the CO in between two nanowire dimers, pushing them outward, blocking the nearest equivalent adsorption sites. This explains the observed long-range repulsive interaction between CO molecules on these Pt induced nanowires.Comment: 12 pages, 10 figure

    Characterisation of an Electrostatic Vibration Harvester

    Get PDF
    Harvesting energy from ambient vibration is proposed as an alternative to storage based power supplies for autonomous systems. The system presented converts the mechanical energy of a vibration into electrical energy by means of a variable capacitor, which is polarized by an electret. A lumped element model is used to study the generator and design a prototype. The device has been micromachined in silicon, based on a two-wafer process. The prototype was successfully tested, both using an external polarization source and an electret.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    Formation of Pt induced Ge atomic nanowires on Pt/Ge(001): a DFT study

    Get PDF
    Pt deposited onto a Ge(001) surface gives rise to the spontaneous formation of atomic nanowires on a mixed Pt-Ge surface after high temperature annealing. We study possible structures of the mixed surface and the nanowires by total energy (density functional theory) calculations. Experimental scanning tunneling microscopy images are compared to the calculated local densities of states. On the basis of this comparison and the stability of the structures, we conclude that the formation of nanowires is driven by an increased concentration of Pt atoms in the Ge surface layers. Surprisingly, the atomic nanowires consist of Ge instead of Pt atoms.Comment: 4 pages, 3 figure

    Compact, low power and low threshold electrically pumped micro disc lasers for 20Gb/s non return to zero all optical wavelength conversion

    Get PDF
    \u3cp\u3eUsing a 7.5μm wide InP Micro-Disc-Laser, with a very low ∼100μA threshold current, heterogeneously integrated on top of Silicon on Insulator substrate, all optical NRZ wavelength conversion at speeds up to 20Gb/s is demonstrated.\u3c/p\u3

    Proof-of-concept demonstration of an all-optical de-multiplexer using III-V/SOI microdisk resonator fabricated in a CMOS pilot line

    Get PDF
    We present a proof-of-concept demonstration of all-optical de-multiplexing of a non-return-to zero 10Gbps data controlled by 2.5GHz clock in an ultra-small III-V-on-silicon microdisk fabricated in a CMOS pilot line

    Extremely uniform lasing wavelengths of InP microdisk lasers heterogeneously integrated on SOI

    Get PDF
    A standard deviation in lasing wavelength lower than 500pm is characterized on nominally identical and optically-pumped microdisk lasers, heterogeneously integrated on the same SOI circuit. This lasing wavelength uniformity is obtained using electron-beam lithography

    Stability of conductance oscillations in monatomic sodium wires

    Get PDF
    We study the stability of conductance oscillations in monatomic sodium wires with respect to structural variations. The geometry, the electronic structure and the electronic potential of sodium wires suspended between two sodium electrodes are obtained from self-consistent density functional theory calculations. The conductance is calculated within the framework of the Landauer-B\"utttiker formalism, using the mode-matching technique as formulated recently in a real-space finite-difference scheme [Phys. Rev. B \textbf{70}, 195402 (2004)]. We find a regular even-odd conductance oscillation as a function of the wire length, where wires comprising an odd number of atoms have a conductance close to the quantum unit G0=e2/πG_0=e^2/\pi\hbar, and even-numbered wires have a lower conductance. The conductance of odd-numbered wires is stable with respect to geometry changes in the wire or in the contacts between the wire and the electrodes; the conductance of even-numbered wires is more sensitive. Geometry changes affect the spacing and widths of the wire resonances. In the case of odd-numbered wires the transmission is on-resonance, and hardly affected by the resonance shapes, whereas for even-numbered wires the transmission is off-resonance and sensitive to the resonance shapes. Predicting the amplitude of the conductance oscillation requires a first-principles calculation based upon a realistic structure of the wire and the leads. A simple tight-binding model is introduced to clarify these results.Comment: 16 pages, 20 figure
    corecore