13,984 research outputs found
The stability and the shape of the heaviest nuclei
In this paper, we report a systematic study of the heaviest nuclei within the
relativistic mean field (RMF) model. By comparing our results with those of the
Hartree-Fock-Bogoliubov method (HFB) and the finite range droplet model (FRDM),
the stability and the shape of the heaviest nuclei are discussed. The
theoretical predictions as well as the existing experimental data indicate that
the experimentally synthesized superheavy nuclei are in between the fission
stability line, the line connecting the nucleus with maximum binding energy per
nucleon in each isotopic chain, and the -stability line, the line
connecting the nucleus with maximum binding energy per nucleon in each isobaric
chain. It is shown that both the fission stability line and the
-stability line tend to be more proton rich in the superheavy region.
Meanwhile, all the three theoretical models predict most synthesized superheavy
nuclei to be deformed.Comment: 6 pages, 7 figures, to appear in Journal of Physics
From the stress response function (back) to the sandpile `dip'
We relate the pressure `dip' observed at the bottom of a sandpile prepared by
successive avalanches to the stress profile obtained on sheared granular layers
in response to a localized vertical overload. We show that, within a simple
anisotropic elastic analysis, the skewness and the tilt of the response profile
caused by shearing provide a qualitative agreement with the sandpile dip
effect. We conclude that the texture anisotropy produced by the avalanches is
in essence similar to that induced by a simple shearing -- albeit tilted by the
angle of repose of the pile. This work also shows that this response function
technique could be very well adapted to probe the texture of static granular
packing.Comment: 8 pages, 8 figures, accepted version to appear in Eur. Phys. J.
Reflection asymmetric relativistic mean field approach and its application to the octupole deformed nucleus Ra
A Reflection ASymmetric Relativistic Mean Field (RAS-RMF) approach is
developed by expanding the equations of motion for both the nucleons and the
mesons on the eigenfunctions of the two-center harmonic-oscillator potential.
The efficiency and reliability of the RAS-RMF approach are demonstrated in its
application to the well-known octupole deformed nucleus Ra and the
available data, including the binding energy and the deformation parameters,
are well reproduced.Comment: 4 pages, 2 figures, and 2 tables, to appear in Chinese Physics
Letter
Study of Radiative Leptonic D Meson Decays
We study the radiative leptonic meson decays of D^+_{(s)}\to
\l^+\nu_{\l}\gamma (\l=e,\mu,\tau), and D^0\to
\l^+\l^-\gamma () within the light front quark model. In the standard
model, we find that the decay branching ratios of , and
are (), (), and
(), and that of D^0\to\l^+\l^-\gamma (\l=e,\mu) and
are and ,
respectively.Comment: 23 pages, 6 Figures, LaTex file, a reference added, to be published
in Mod. Phys. Lett.
Spurious Shell Closures in the Relativistic Mean Field Model
Following a systematic theoretical study of the ground-state properties of
over 7000 nuclei from the proton drip line to the neutron drip line in the
relativistic mean field model [Prog. Theor. Phys. 113 (2005) 785], which is in
fair agreement with existing experimental data, we observe a few spurious shell
closures, i.e. proton shell closures at Z=58 and Z=92. These spurious shell
closures are found to persist in all the effective forces of the relativistic
mean field model, e.g. TMA, NL3, PKDD and DD-ME2.Comment: 3 pages, to appear in Chinese Physics Letter
Gradient echo memory in an ultra-high optical depth cold atomic ensemble
Quantum memories are an integral component of quantum repeaters - devices
that will allow the extension of quantum key distribution to communication
ranges beyond that permissible by passive transmission. A quantum memory for
this application needs to be highly efficient and have coherence times
approaching a millisecond. Here we report on work towards this goal, with the
development of a Rb magneto-optical trap with a peak optical depth of
1000 for the D2 transition using spatial and temporal
dark spots. With this purpose-built cold atomic ensemble to implement the
gradient echo memory (GEM) scheme. Our data shows a memory efficiency of % and coherence times up to 195 s, which is a factor of four greater
than previous GEM experiments implemented in warm vapour cells.Comment: 15 pages, 5 figure
Trapping of Rb atoms by ac electric fields
We demonstrate trapping of an ultracold gas of neutral atoms in a macroscopic
ac electric trap. Three-dimensional confinement is obtained by switching
between two saddle-point configurations of the electric field. Stable trapping
is observed in a narrow range of switching frequencies around 60 Hz. The
dynamic confinement of the atoms is directly visualized at different phases of
the ac switching cycle. We observe about 10^5 Rb atoms in the 1 mm^3 large and
several microkelvins deep trap with a lifetime of approximately 5 s.Comment: 4 pages, 4 figures; updated version, added journal referenc
Transients in sheared granular matter
As dense granular materials are sheared, a shear band and an anisotropic
force network form. The approach to steady state behavior depends on the
history of the packing and the existing force and contact network. We present
experiments on shearing of dense granular matter in a 2D Couette geometry in
which we probe the history and evolution of shear bands by measuring particle
trajectories and stresses during transients. We find that when shearing is
stopped and restarted in the same direction, steady state behavior is
immediately reached, in agreement with the typical assumption that the system
is quasistatic. Although some relaxation of the force network is observed when
shearing is stopped, quasistatic behavior is maintained because the contact
network remains essentially unchanged. When the direction of shear is reversed,
a transient occurs in which stresses initially decrease, changes in the force
network reach further into the bulk, and particles far from the wheel become
more mobile. This occurs because the force network is fragile to changes
transverse to the force network established under previous shear; particles
must rearrange before becoming jammed again, thereby providing resistance to
shear in the reversed direction. The strong force network is reestablished
after displacing the shearing surface , where is the mean grain
diameter. Steady state velocity profiles are reached after a shear of . Particles immediately outside of the shear band move on average less than
1 diameter before becoming jammed again. We also examine particle rotation
during this transient and find that mean particle spin decreases during the
transient, which is related to the fact that grains are not interlocked as
strongly.Comment: 7 pages, 11 figures, accepted to Eur. Phys. J. E, revised version
based on referee suggestion
- …
