8,090 research outputs found
Paired accelerated arames: The perfect interferometer with everywhere smooth wave amplitudes
Rindler's acceleration-induced partitioning of spacetime leads to a
nature-given interferometer. It accomodates quantum mechanical and wave
mechanical processes in spacetime which in (Euclidean) optics correspond to
wave processes in a ``Mach-Zehnder'' interferometer: amplitude splitting,
reflection, and interference. These processes are described in terms of
amplitudes which behave smoothly across the event horizons of all four Rindler
sectors. In this context there arises quite naturally a complete set of
orthonormal wave packet histories, one of whose key properties is their
"explosivity index". In the limit of low index values the wave packets trace
out fuzzy world lines. By contrast, in the asymptotic limit of high index
values, there are no world lines, not even fuzzy ones. Instead, the wave packet
histories are those of entities with non-trivial internal collapse and
explosion dynamics. Their details are described by the wave processes in the
above-mentioned Mach-Zehnder interferometer. Each one of them is a double slit
interference process. These wave processes are applied to elucidate the
amplification of waves in an accelerated inhomogeneous dielectric. Also
discussed are the properties and relationships among the transition amplitudes
of an accelerated finite-time detector.Comment: 38 pages, RevTex, 10 figures, 4 mathematical tutorials. Html version
of the figures and of related papers available at
http://www.math.ohio-state.edu/~gerlac
Stimulation of endothelial adenosine Al receptors enhances adhesion of neutrophils in the intact guinea pig coronary system
Objective: The primary aim was to determine the action of pathophysiologically relevant adenosine concentrations (0.1-1 μM) on adhesion of neutrophils to coronary endothelium. Further aims were to evaluate the nature and localisation of the adenosine receptor involved. and to assess the effect of endogenous adenosine.
Methods: Adhesion was studied in isolated perfused guinea pig hearts by determining the number of cells emerging in the coronary effluent after intracoronary bolus injections of 600 000 neutrophils prepared from guinea pig or human blood. The system was characterised by the use of the proadhesive stimulus thrombin.
Results: A 5 rnin infusion of adenosine (0.1-0.3 μM) or the A1 receptor agonist N6-cyclopentyladenosine (CPA, 0.01 μM) significantly increased adhesion from about 20% (control) to 30%. This effect was prevented by the A1 receptor antagonist dipropyl-8-cyclopentylxanthine (DPCPX. 0.1 μM). It was not diminished by cessation of adenosine infusion 90 s prior to neutrophil injection. At a higher concentration of adenosine (1 μM), adhesion did not seem to be enhanced. However, coinfusion of the A2 receptor antagonist 3,7-dimethyl-1-propargylxanthine (DMPX. 0.1 μM) with 1 μM adenosine unmasked the A1 action, adhesion rising to 39%. Adenosine had a quantitatively identical effect on adhesion of human neutrophils. Total ischaemia of 15 min duration raised adhesion of subsequently applied neutrophils to 35%. This effect was completely blocked by DPCPX, as well as by ischaemic preconditioning (3 X 3 min). Preconditioning raised initial postischaemic coronary effluent adenosine from about 0.8 μM to 1.5 μM.
Conclusions: The findings suggest a bimodal participation of adenosine in the development of postischaemic dysfunction by an endothelium dependent modulation of neutrophil adhesion. Stimulation occurs via endothelial A1 receptors at submicromolar adenosine levels, whereas cardioprotection by adenosine may in part relate to the use of pharmacologically high concentrations of adenosine or enhanced endogenous production after preconditioning
Coulomb field of an accelerated charge: physical and mathematical aspects
The Maxwell field equations relative to a uniformly accelerated frame, and
the variational principle from which they are obtained, are formulated in terms
of the technique of geometrical gauge invariant potentials. They refer to the
transverse magnetic (TM) and the transeverse electric (TE) modes. This gauge
invariant "2+2" decomposition is used to see how the Coulomb field of a charge,
static in an accelerated frame, has properties that suggest features of
electromagnetism which are different from those in an inertial frame. In
particular, (1) an illustrative calculation shows that the Larmor radiation
reaction equals the electrostatic attraction between the accelerated charge and
the charge induced on the surface whose history is the event horizon, and (2) a
spectral decomposition of the Coulomb potential in the accelerated frame
suggests the possibility that the distortive effects of this charge on the
Rindler vacuum are akin to those of a charge on a crystal lattice.Comment: 27 pages, PlainTex. Related papers available at
http://www.math.ohio-state.edu/~gerlac
A network approach to topic models
One of the main computational and scientific challenges in the modern age is
to extract useful information from unstructured texts. Topic models are one
popular machine-learning approach which infers the latent topical structure of
a collection of documents. Despite their success --- in particular of its most
widely used variant called Latent Dirichlet Allocation (LDA) --- and numerous
applications in sociology, history, and linguistics, topic models are known to
suffer from severe conceptual and practical problems, e.g. a lack of
justification for the Bayesian priors, discrepancies with statistical
properties of real texts, and the inability to properly choose the number of
topics. Here we obtain a fresh view on the problem of identifying topical
structures by relating it to the problem of finding communities in complex
networks. This is achieved by representing text corpora as bipartite networks
of documents and words. By adapting existing community-detection methods --
using a stochastic block model (SBM) with non-parametric priors -- we obtain a
more versatile and principled framework for topic modeling (e.g., it
automatically detects the number of topics and hierarchically clusters both the
words and documents). The analysis of artificial and real corpora demonstrates
that our SBM approach leads to better topic models than LDA in terms of
statistical model selection. More importantly, our work shows how to formally
relate methods from community detection and topic modeling, opening the
possibility of cross-fertilization between these two fields.Comment: 22 pages, 10 figures, code available at https://topsbm.github.io
Charge carrier interaction with a purely electronic collective mode: Plasmarons and the infrared response of elemental bismuth
We present a detailed optical study of single crystal bismuth using infrared
reflectivity and ellipsometry. Colossal changes in the plasmon frequency are
observed as a function of temperature due to charge transfer between hole and
electron Fermi pockets. In the optical conductivity, an anomalous temperature
dependent mid-infrared absorption feature is observed. An extended Drude model
analysis reveals that it can be connected to a sharp upturn in the scattering
rate, the frequency of which exactly tracks the temperature dependent plasmon
frequency. We interpret this absorption and increased scattering as the first
direct optical evidence for a charge carrier interaction with a collective mode
of purely electronic origin; here electron-plasmon scattering. The observation
of a \emph{plasmaron} as such is made possible only by the unique coincidence
of various energy scales and exceptional properties of semi-metal bismuth.Comment: 4 pages, 4 figure
Staying in place during times of change in Arctic Alaska: The implications of attachment,alternatives, and buffering
The relationship between stability and change in social-ecological systems has received considerable attention in recent years, including the expectation that significant environmental changes will drive observable consequences for individuals, communities, and populations. Migration, as one example of response to adverse economic or environmental changes, has been observed in many places, including parts of the Far North. In Arctic Alaska, a relative lack of demographic or migratory response to rapid environmental and other changes has been observed. To understand why Arctic Alaska appears different, we draw on the literature on environmentally driven migration, focusing on three mechanisms that could account for the lack of response: attachment, the desire to remain in place, or the inability to relocate successfully; alternatives, ways to achieve similar outcomes through different means; and buffering, the reliance on subsidies or use of reserves to delay impacts. Each explanation has different implications for research and policy, indicating a need to further explore the relative contribution that each makes to a given situation in order to develop more effective responses locally and regionally. Given that the Arctic is on the front lines of climate change, these explanations are likely relevant to the ways changes play out in other parts of the world. Our review also underscores the importance of further attention to the details of social dynamics in climate change impacts and responses
Effect of Plasma Irradiation on films
The effect of plasma irradiation is studied systematically on a 4H polytype
(002) oriented stoichiometric film having compressive residual
stress. Plasma irradiation was found to change the orientation to (110) of the
film at certain moderate irradiation distances. A linear decrease in grain size
and residual stress was observed with decreasing irradiation distance (or
increasing ion energy) consistent with both structural and morphological
observations. The direct optical energy gap was found to increase
linearly at the rate with the compressive stress. The
combined data of present compressive stress and from earlier reported tensile
stress show a consistent trend of change with stress. The
iodine-iodine distance in the unit cell could be responsible for the observed
change in with stress.Comment: 13 pages and 10 fi
The Stern-Gerlach Experiment Revisited
The Stern-Gerlach-Experiment (SGE) of 1922 is a seminal benchmark experiment
of quantum physics providing evidence for several fundamental properties of
quantum systems. Based on today's knowledge we illustrate the different
benchmark results of the SGE for the development of modern quantum physics and
chemistry.
The SGE provided the first direct experimental evidence for angular momentum
quantization in the quantum world and thus also for the existence of
directional quantization of all angular momenta in the process of measurement.
It measured for the first time a ground state property of an atom, it produced
for the first time a `spin-polarized' atomic beam, it almost revealed the
electron spin. The SGE was the first fully successful molecular beam experiment
with high momentum-resolution by beam measurements in vacuum. This technique
provided a new kinematic microscope with which inner atomic or nuclear
properties could be investigated.
The original SGE is described together with early attempts by Einstein,
Ehrenfest, Heisenberg, and others to understand directional quantization in the
SGE. Heisenberg's and Einstein's proposals of an improved multi-stage SGE are
presented. The first realization of these proposals by Stern, Phipps, Frisch
and Segr\`e is described. The set-up suggested by Einstein can be considered an
anticipation of a Rabi-apparatus. Recent theoretical work is mentioned in which
the directional quantization process and possible interference effects of the
two different spin states are investigated.
In full agreement with the results of the new quantum theory directional
quantization appears as a general and universal feature of quantum
measurements. One experimental example for such directional quantization in
scattering processes is shown. Last not least, the early history of the
`almost' discovery of the electron spin in the SGE is revisited.Comment: 50pp, 17 fig
- …
