1,278 research outputs found

    Evaluating the impact of the community-based health planning and services initiative on uptake of skilled birth care in Ghana

    Get PDF
    Background: the Community-based Health Planning and Services (CHPS) initiative is a major government policy to improve maternal and child health and accelerate progress in the reduction of maternal mortality in Ghana. However, strategic intelligence on the impact of the initiative is lacking, given the persistent ?problems of patchy geographical access to care for rural women. This study investigates the impact of proximity to CHPS on facilitating uptake of skilled ?birth care in rural areas.Methods and findings: data from the ?2003 and 2008 Demographic and Health Survey, ? on 4,349 births from 463 rural communities were linked to georeferenced data on health facilities, CHPS and topographic data on national road-networks. Distance to nearest health facility and CHPS was computed using the closest facility functionality in ArcGIS 10.1. Multilevel logistic regression was used to examine the effect of proximity to health facilities and CHPS on use of skilled care at birth, adjusting for relevant predictors and clustering within ?communities.? The results show that a substantial proportion of births continue to occur in communities more than 8 km from both ?health facilities and CHPS. Increases in uptake of skilled birth care are more pronounced where both health ?facilities and CHPS compounds are within 8 km, but not in communities within 8 km of CHPS but lack access to health facilities. Where both health facilities and CHPS are within 8 km, the odds of skilled ?birth care is 16% higher than ?where there is only a health facility within 8km. Conclusion: where CHPS compounds are set up near health facilities, there is improved access to care, demonstrating the facilitatory role of CHPS in stimulating access to better care at birth, in areas where health facilities are accessible. <br/

    Shepard avocado maturity consumer sensory research

    Get PDF
    Dry matter content (DM) of avocados represents the amount of carbohydrates and nutrients that have been transported from the tree into the fruit. The longer the avocado remains on the tree, the higher the dry matter, and consequently, %DM is used by growers to decide when avocados are ready to harvest. In the current study, 112 consumers tasted ‘Shepard’, a variety of avocado that can be harvested early in the season. The avocados were collected from a range of locations in Northern Queensland in order to ensure that fruit of varying maturity (%DM) were available for tasting at the same time. Consumers’ liking of flavour increased progressively as the DM content of avocados increased from 18% to 23% but then reached a plateau, where further increases in DM did not result in corresponding increases in liking. The immature (lower DM) avocados were frequently described as having ‘bland/tasteless’ or ‘watery’ flavour as well as being less liked than other avocados. Following tasting, consumers were asked about their experience with avocados and the extent that a quality guarantee offering to refund or replace damaged fruit might increase purchasing. Consumers continued to report a high incidence and severity of damage in the avocados they purchased for consumption at home. The study indicated that consumers’ willingness to buy avocados increased as a consequence of the quality guarantee

    Defining the relationship between parasite rate and clinical disease: statistical models for disease burden estimation

    Get PDF
    Abstract Background Clinical malaria has proven an elusive burden to enumerate. Many cases go undetected by routine disease recording systems. Epidemiologists have, therefore, frequently defaulted to actively measuring malaria in population cohorts through time. Measuring the clinical incidence of malaria longitudinally is labour-intensive and impossible to undertake universally. There is a need, therefore, to define a relationship between clinical incidence and the easier and more commonly measured index of infection prevalence: the "parasite rate". This relationship can help provide an informed basis to define malaria burdens in areas where health statistics are inadequate. Methods Formal literature searches were conducted for Plasmodium falciparum malaria incidence surveys undertaken prospectively through active case detection at least every 14 days. The data were abstracted, standardized and geo-referenced. Incidence surveys were time-space matched with modelled estimates of infection prevalence derived from a larger database of parasite prevalence surveys and modelling procedures developed for a global malaria endemicity map. Several potential relationships between clinical incidence and infection prevalence were then specified in a non-parametric Gaussian process model with minimal, biologically informed, prior constraints. Bayesian inference was then used to choose between the candidate models. Results The suggested relationships with credible intervals are shown for the Africa and a combined America and Central and South East Asia regions. In both regions clinical incidence increased slowly and smoothly as a function of infection prevalence. In Africa, when infection prevalence exceeded 40%, clinical incidence reached a plateau of 500 cases per thousand of the population per annum. In the combined America and Central and South East Asia regions, this plateau was reached at 250 cases per thousand of the population per annum. A temporal volatility model was also incorporated to facilitate a closer description of the variance in the observed data. Conclusion It was possible to model a relationship between clinical incidence and P. falciparum infection prevalence but the best-fit models were very noisy reflecting the large variance within the observed opportunistic data sample. This continuous quantification allows for estimates of the clinical burden of P. falciparum of known confidence from wherever an estimate of P. falciparum prevalence is available.</p

    Prevalence and Predictors of Urinary Tract Infection and Severe Malaria Among Febrile Children Attending Makongoro Health Centre in Mwanza City, North-Western Tanzania.

    Get PDF
    In malaria endemic areas, fever has been used as an entry point for presumptive treatment of malaria. At present, the decrease in malaria transmission in Africa implies an increase in febrile illnesses related to other causes among underfives. Moreover, it is estimated that more than half of the children presenting with fever to public clinics in Africa do not have a malaria infection. Thus, for a better management of all febrile illnesses among under-fives, it becomes relevant to understand the underlying aetiology of the illness. The present study was conducted to determine the relative prevalence and predictors of P. falciparum malaria, urinary tract infections and bacteremia among under-fives presenting with a febrile illness at the Makongoro Primary Health Centre, North-Western Tanzania. From February to June 2011, a cross-sectional analytical survey was conducted among febrile children less than five years of age. Demographic and clinical data were collected using a standardized pre-tested questionnaire. Blood and urine culture was done, followed by the identification of isolates using in-house biochemical methods. Susceptibility patterns to commonly used antibiotics were investigated using the disc diffusion method. Giemsa stained thin and thick blood smears were examined for any malaria parasites stages. A total of 231 febrile under-fives were enrolled in the study. Of all the children, 20.3% (47/231, 95%CI, 15.10-25.48), 9.5% (22/231, 95%CI, 5.72-13.28) and 7.4% (17/231, 95%CI, 4.00-10.8) had urinary tract infections, P. falciparum malaria and bacteremia respectively. In general, 11.5% (10/87, 95%CI, 8.10-14.90) of the children had two infections and only one child had all three infections. Predictors of urinary tract infections (UTI) were dysuria (OR = 12.51, 95% CI, 4.28-36.57, P < 0.001) and body temperature (40-41 C) (OR = 12.54, 95% CI, 4.28-36.73, P < 0.001). Predictors of P. falciparum severe malaria were pallor (OR = 4.66 95%CI, 1.21-17.8, P = 0.025) and convulsion (OR = 102, 95% CI, 10-996, P = 0.001). Escherichia coli were the common gram negative isolates from urine (72.3%, 95% CI, 66.50-78.10) and blood (40%, 95%CI, and 33.70-46.30). Escherichia coli from urine were 100% resistant to ampicillin, 97% resistant to co-trimoxazole, 85% resistant to augmentin and 32.4% resistant to gentamicin; and they were 100%, 91.2% and 73.5% sensitive to meropenem, ciprofloxacin and ceftriaxone respectively. Urinary tract infection caused by multi drug resistant Escherichia coli was the common cause of febrile illness in our setting. Improvement of malaria diagnosis and its differential diagnosis from other causes of febrile illnesses may provide effective management of febrile illnesses among children in Tanzania

    Access to Artemisinin-Based Anti-Malarial Treatment and its Related Factors in Rural Tanzania.

    Get PDF
    Artemisinin-based combination treatment (ACT) has been widely adopted as one of the main malaria control strategies. However, its promise to save thousands of lives in sub-Saharan Africa depends on how effective the use of ACT is within the routine health system. The INESS platform evaluated effective coverage of ACT in several African countries. Timely access within 24 hours to an authorized ACT outlet is one of the determinants of effective coverage and was assessed for artemether-lumefantrine (Alu), in two district health systems in rural Tanzania. From October 2009 to June 2011we conducted continuous rolling household surveys in the Kilombero-Ulanga and the Rufiji Health and Demographic Surveillance Sites (HDSS). Surveys were linked to the routine HDSS update rounds. Members of randomly pre-selected households that had experienced a fever episode in the previous two weeks were eligible for a structured interview. Data on individual treatment seeking, access to treatment, timing, source of treatment and household costs per episode were collected. Data are presented on timely access from a total of 2,112 interviews in relation to demographics, seasonality, and socio economic status. In Kilombero-Ulanga, 41.8% (CI: 36.6-45.1) and in Rufiji 36.8% (33.7-40.1) of fever cases had access to an authorized ACT provider within 24 hours of fever onset. In neither of the HDSS site was age, sex, socio-economic status or seasonality of malaria found to be significantly correlated with timely access. Timely access to authorized ACT providers is below 50% despite interventions intended to improve access such as social marketing and accreditation of private dispensing outlets. To improve prompt diagnosis and treatment, access remains a major bottle neck and new more innovative interventions are needed to raise effective coverage of malaria treatment in Tanzania

    Hsp70 in mitochondrial biogenesis

    Get PDF
    The family of hsp70 (70 kilodalton heat shock protein) molecular chaperones plays an essential and diverse role in cellular physiology, Hsp70 proteins appear to elicit their effects by interacting with polypeptides that present domains which exhibit non-native conformations at distinct stages during their life in the cell. In this paper we review work pertaining to the functions of hsp70 proteins in chaperoning mitochondrial protein biogenesis. Hsp70 proteins function in protein synthesis, protein translocation across mitochondrial membranes, protein folding and finally the delivery of misfolded proteins to proteolytic enzymes in the mitochondrial matrix

    Correction: The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis

    Get PDF
    Background: An increasing knowledge of the global risk of malaria shows that the nations of the Americas have the lowest levels of Plasmodium falciparum and P. vivax endemicity worldwide, sustained, in part, by substantive integrated vector control. To help maintain and better target these efforts, knowledge of the contemporary distribution of each of the dominant vector species (DVS) of human malaria is needed, alongside a comprehensive understanding of the ecology and behaviour of each species. Results: A database of contemporary occurrence data for 41 of the DVS of human malaria was compiled from intensive searches of the formal and informal literature. The results for the nine DVS of the Americas are described in detail here. Nearly 6000 occurrence records were gathered from 25 countries in the region and were complemented by a synthesis of published expert opinion range maps, refined further by a technical advisory group of medical entomologists. A suite of environmental and climate variables of suspected relevance to anopheline ecology were also compiled from open access sources. These three sets of data were then combined to produce predictive species range maps using the Boosted Regression Tree method. The predicted geographic extent for each of the following species (or species complex*) are provided: Anopheles (Nyssorhynchus) albimanus Wiedemann, 1820, An. (Nys.) albitarsis*, An. (Nys.) aquasalis Curry, 1932, An. (Nys.) darlingi Root, 1926, An. (Anopheles) freeborni Aitken, 1939, An. (Nys.) marajoara Galvão & Damasceno, 1942, An. (Nys.) nuneztovari*, An. (Ano.) pseudopunctipennis* and An. (Ano.) quadrimaculatus Say, 1824. A bionomics review summarising ecology and behaviour relevant to the control of each of these species was also compiled. Conclusions: The distribution maps and bionomics review should both be considered as a starting point in an ongoing process of (i) describing the distributions of these DVS (since the opportunistic sample of occurrence data assembled can be substantially improved) and (ii) documenting their contemporary bionomics (since intervention and control pressures can act to modify behavioural traits). This is the first in a series of three articles describing the distribution of the 41 global DVS worldwide. The remaining two publications will describe those vectors found in (i) Africa, Europe and the Middle East and (ii) in Asia. All geographic distribution maps are being made available in the public domain according to the open access principles of the Malaria Atlas Project. © 2010 Sinka et al; licensee BioMed Central Ltd.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea

    Get PDF
    Although reduced blood lactate concentrations ([lac−]B) have been observed during whole-body exercise following inspiratory muscle training (IMT), it remains unknown whether the inspiratory muscles are the source of at least part of this reduction. To investigate this, we tested the hypothesis that IMT would attenuate the increase in [lac−]B caused by mimicking, at rest, the breathing pattern observed during high-intensity exercise. Twenty-two physically active males were matched for 85% maximal exercise minute ventilation (V˙Emax) and divided equally into an IMT or a control group. Prior to and following a 6 week intervention, participants performed 10 min of volitional hyperpnoea at the breathing pattern commensurate with 85% V˙Emax

    The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis

    Get PDF
    Background: This is the second in a series of three articles documenting the geographical distribution of 41 dominant vector species (DVS) of human malaria. The first paper addressed the DVS of the Americas and the third will consider those of the Asian Pacific Region. Here, the DVS of Africa, Europe and the Middle East are discussed. The continent of Africa experiences the bulk of the global malaria burden due in part to the presence of the An. gambiae complex.Anopheles gambiae is one of four DVS within the An. gambiae complex, the others being An. arabiensis and the coastal An. merus and An. melas. There are a further three, highly anthropophilic DVS in Afria, An. funestus, An. moucheti and An. nili. Conversely, across Europe and the Middle East, malaria transmission is low and frequently absent, despite the presence of six DVS. To help control malaria in Africa and the Middle East, or to identify the risk of its re-emergence in Europe, the contemporary distribution and bionomics of the relevant DVS are needed.Results: A contemporary database of occurrence data, compiled from the formal literature and other relevant resources, resulted in the collation of information for seven DVS from 44 countries in Africa containing 4234 geo-referenced, independent sites. In Europe and the Middle East, six DVS were identified from 2784 geo-referenced sites across 49 countries. These occurrence data were combined with expert opinion ranges and a suite of environmental and climatic variables of relevance to anopheline ecology to produce predictive distribution maps using the Boosted Regression Tree (BRT)method.Conclusions: The predicted geographic extent for the following DVS (or species/suspected species complex*) is provided for Africa: Anopheles (Cellia) arabiensis, An. (Cel.) funestus*, An. (Cel.) gambiae, An. (Cel.) melas, An. (Cel.) merus, An. (Cel.) moucheti and An. (Cel.) nili*, and in the European and Middle Eastern region: An. (Anopheles) atroparvus, An. (Ano.) labranchiae, An. (Ano.) messae, An. (Ano.) sacharovi, An. (Cel.) segentil and An. (Cel.) superpictus*. These maps are presented alongside a bionomics summary for each species relevant to its control

    Epidemiology of Subpatent Plasmodium Falciparum Infection: Implications for Detection of Hotspots with Imperfect Diagnostics.

    Get PDF
    At the local level, malaria transmission clusters in hotspots, which may be a group of households that experience higher than average exposure to infectious mosquitoes. Active case detection often relying on rapid diagnostic tests for mass screen and treat campaigns has been proposed as a method to detect and treat individuals in hotspots. Data from a cross-sectional survey conducted in north-western Tanzania were used to examine the spatial distribution of Plasmodium falciparum and the relationship between household exposure and parasite density. Dried blood spots were collected from consenting individuals from four villages during a survey conducted in 2010. These were analysed by PCR for the presence of P. falciparum, with the parasite density of positive samples being estimated by quantitative PCR. Household exposure was estimated using the distance-weighted PCR prevalence of infection. Parasite density simulations were used to estimate the proportion of infections that would be treated using a screen and treat approach with rapid diagnostic tests (RDT) compared to targeted mass drug administration (tMDA) and Mass Drug Administration (MDA). Polymerase chain reaction PCR analysis revealed that of the 3,057 blood samples analysed, 1,078 were positive. Mean distance-weighted PCR prevalence per household was 34.5%. Parasite density was negatively associated with transmission intensity with the odds of an infection being subpatent increasing with household exposure (OR 1.09 per 1% increase in exposure). Parasite density was also related to age, being highest in children five to ten years old and lowest in those > 40 years. Simulations of different tMDA strategies showed that treating all individuals in households where RDT prevalence was above 20% increased the number of infections that would have been treated from 43 to 55%. However, even with this strategy, 45% of infections remained untreated. The negative relationship between household exposure and parasite density suggests that DNA-based detection of parasites is needed to provide adequate sensitivity in hotspots. Targeting MDA only to households with RDT-positive individuals may allow a larger fraction of infections to be treated. These results suggest that community-wide MDA, instead of screen and treat strategies, may be needed to successfully treat the asymptomatic, subpatent parasite reservoir and reduce transmission in similar settings
    corecore