671 research outputs found
Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample
We show that the orientation of nitrogen-vacancy (NV) defects in diamond can
be efficiently controlled through chemical vapor deposition (CVD) growth on a
(111)-oriented diamond substrate. More precisely, we demonstrate that
spontaneously generated NV defects are oriented with a ~ 97 % probability along
the [111] axis, corresponding to the most appealing orientation among the four
possible crystallographic axes. Such a nearly perfect preferential orientation
is explained by analyzing the diamond growth mechanism on a (111)-oriented
substrate and could be extended to other types of defects. This work is a
significant step towards the design of optimized diamond samples for quantum
information and sensing applications.Comment: 6 pages, 4 figure
The Balance of Apoptotic and Necrotic Cell Death in Mycobacterium tuberculosis Infected Macrophages Is Not Dependent on Bacterial Virulence
An important mechanism of Mycobacterium tuberculosis pathogenesis is the ability to control cell death pathways in infected macrophages: apoptotic cell death is bactericidal, whereas necrotic cell death may facilitate bacterial dissemination and transmission
Tolerance and efficacy of preventive gastrostomy feeding in pediatric oncology
BackgroundMalnutrition in pediatric oncology remains underestimated, although having a negative impact on outcome. Enteral nutrition (EN) using percutaneous endoscopic gastrostomy (PEG) may prevent or reverse malnutrition consequences. We aimed to evaluate both efficacy and safety of early EN during tumors treatment in children. Procedures Medical records of pediatric patients having a PEG tube inserted between 1995 and 2009 were retrospectively reviewed. We compared type and incidence of complications in Group 1, including 74 patients suffering from cancer, and control Group 2, including 57 patients with neurological impairment. Efficacy of EN was evaluated through nutritional parameters [Z-scores weight for height (W/H) and height for age (H/A)], post-operative complications and relapse rates. Statistical significance was set for P < 0.05. Results PEG tolerance was similar in both groups, as shown by comparable complication rates (62% vs. 76%, NS). EN allowed improvement or stabilization of Z-score W/H in 76% of oncologic patients. The final height loss was lower (−0.5 vs. −1.2 SD of Z-scores H/A) when EN was started at the beginning of the oncologic treatment. In bone tumors, EN prevented weight loss during chemotherapy, and tended to lessen surgical complications, relapses and deaths. Conclusions Early gastrostomy feeding represents a relatively safe way to prevent malnutrition in children with cancer, and might play a role in bone tumors oncological outcome. Further prospective studies are needed to confirm these results and assess the impact of EN and PEG on quality of life
Using LES to Study Reacting Flows and Instabilities in Annular Combustion Chambers
Great prominence is put on the design of aeronautical gas turbines due to increasingly stringent regulations and the need to tackle rising fuel prices. This drive towards innovation has resulted sometimes in new concepts being prone to combustion instabilities. In the particular field of annular combustion chambers, these instabilities often take the form of azimuthal modes. To predict these modes, one must compute the full combustion chamber, which remained out of reach until very recently and the development of massively parallel computers. Since one of the most limiting factors in performing Large Eddy Simulation (LES) of real combustors is estimating the adequate grid, the effects of mesh resolution are investigated by computing full annular LES of a realistic helicopter combustion chamber on three grids, respectively made of 38, 93 and 336 million elements. Results are compared in terms of mean and fluctuating fields. LES captures self-established azimuthal modes. The presence and structure of the modes is discussed. This study therefore highlights the potential of LES for studying combustion instabilities in annular gas turbine combustors
TNOs are Cool: A survey of the trans-Neptunian region. VIII. Combined Herschel PACS and SPIRE observations of nine bright targets at 70–500 μm
International audienceAims. Trans-Neptunian objects (TNOs) are bodies populating the Kuiper belt and they are believed to retain the most pristine and least altered material of the solar system. The Herschel open time key programme entitled “TNOs are Cool: A survey of the trans-Neptunian region” has been awarded 373 h to investigate the albedo, size distribution and thermal properties of TNOs and Centaurs. Here we focus on the brightest targets observed by both the PACS and SPIRE multiband photometers: the dwarf planet Haumea, six TNOs (Huya, Orcus, Quaoar, Salacia, 2002 UX25, and 2002 TC302), and two Centaurs (Chiron and Chariklo).Methods. Flux densities are derived from PACS and SPIRE instruments using optimised data reduction methods. The spectral energy distribution obtained with the Herschel PACS and SPIRE instruments over 6 bands (centred at 70, 100, 160, 250, 350, and 500 μm), with Spitzer-MIPS at 23.7 and 71.4 μm, and with WISE at 11.6 and 22.1 μm in the case of 10199 Chariklo, has been modelled with the NEATM thermal model in order to derive the albedo, diameter, and beaming factor. For the Centaurs Chiron and Chariklo and for the 1000 km sized Orcus and Quaoar, a thermophysical model was also run to better constrain their thermal properties.Results. We derive the size, albedo, and thermal properties, including thermal inertia and surface emissivity, for the 9 TNOs and Centaurs. Several targets show a significant decrease in their spectral emissivity longwards of ~300 μm and especially at 500 μm. Using our size estimations and the mass values available in the literature, we also derive the bulk densities for the binaries Quaoar/Weywot (2.18-0.36+0.43 g/cm3), Orcus/Vanth (1.53-0.13+0.15 g/cm3), and Salacia/Actea (1.29-0.23+0.29 g/cm3). Quaoar’s density is similar to that of the other dwarf planets Pluto and Haumea, and its value implies high contents of refractory materials mixed with ices
Validation and Performance of the LHC Cryogenic System through Commissioning of the First Sector
The cryogenic system [1] for the Large Hadron Collider accelerator is presently in its final phase of commissioning at nominal operating conditions. The refrigeration capacity for the LHC is produced using eight large cryogenic plants and eight 1.8 K refrigeration units installed on five cryogenic islands. Machine cryogenic equipment is installed in a 26.7-km circumference ring deep underground tunnel and are maintained at their nominal operating conditions via a distribution system consisting of transfer lines, cold interconnection boxes at each cryogenic island and a cryogenic distribution line. The functional analysis of the whole system during all operating conditions was established and validated during the first sector commissioning in order to maximize the system availability. Analysis, operating modes, main failure scenarios, results and performance of the cryogenic system are presented
Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages
This study provides the proof of principle that probing the host and the microbe transcriptomes simultaneously is a valuable means to accessing unique information on host pathogen interactions. Our results also underline the extraordinary plasticity of host cell and pathogen responses to infection, and provide a solid framework to further understand the complex mechanisms involved in immunity to M. tuberculosis and in mycobacterial adaptation to different intracellular environments
A non-hybrid method for the PDF equations of turbulent flows on unstructured grids
In probability density function (PDF) methods of turbulent flows, the joint
PDF of several flow variables is computed by numerically integrating a system
of stochastic differential equations for Lagrangian particles. A set of
parallel algorithms is proposed to provide an efficient solution of the PDF
transport equation, modeling the joint PDF of turbulent velocity, frequency and
concentration of a passive scalar in geometrically complex configurations. An
unstructured Eulerian grid is employed to extract Eulerian statistics, to solve
for quantities represented at fixed locations of the domain (e.g. the mean
pressure) and to track particles. All three aspects regarding the grid make use
of the finite element method (FEM) employing the simplest linear FEM shape
functions. To model the small-scale mixing of the transported scalar, the
interaction by exchange with the conditional mean model is adopted. An adaptive
algorithm that computes the velocity-conditioned scalar mean is proposed that
homogenizes the statistical error over the sample space with no assumption on
the shape of the underlying velocity PDF. Compared to other hybrid
particle-in-cell approaches for the PDF equations, the current methodology is
consistent without the need for consistency conditions. The algorithm is tested
by computing the dispersion of passive scalars released from concentrated
sources in two different turbulent flows: the fully developed turbulent channel
flow and a street canyon (or cavity) flow. Algorithmic details on estimating
conditional and unconditional statistics, particle tracking and particle-number
control are presented in detail. Relevant aspects of performance and
parallelism on cache-based shared memory machines are discussed.Comment: Accepted in Journal of Computational Physics, Feb. 20, 200
Multiwavelength Observations of Recent Comets
Comets provide important clues to the physical and chemical processes that occurred during the formation and early evolution of the Solar System, and could also have been important for initiating prebiotic chemistry on the early Earth. Comets are comprised of molecular ices, that may be pristine inter-stellar remnants of Solar System formation, along with high-temperature crystalline silicate dust that is indicative of a more thermally varied history in the protosolar nebula. Comparing abundances of cometary parent volatiles, and isotopic fractionation ratios, to those found in the interstellar medium, in disks around young stars, and between cometary families, is vital to understanding planetary system formation and the processing history experienced by organic matter in the so-called interstellar-comet connection. We will present a comparison of molecular abundances in these comets to those observed in others, supporting a long-term effort of building a comet taxonomy based on composition
Recent advances in understanding Cushing disease: resistance to glucocorticoid negative feedback and somatic USP8 mutations
Cushing’s disease is a rare disease with a characteristic phenotype due to significant hypercortisolism driven by over-secretion of adrenocorticotropic hormone and to high morbidity and mortality if untreated. It is caused by a corticotroph adenoma of the pituitary, but the exact mechanisms leading to tumorigenesis are not clear. Recent advances in molecular biology such as the discovery of somatic mutations of the ubiquitin-specific peptidase 8 (USP8) gene allow new insights into the pathogenesis, which could be translated into exciting and much-needed therapeutic applications
- …
