290 research outputs found
Axial Concentration Profiles and NO Flue Gas in a Pilot-Scale Bubbling Fluidized Bed Coal Combustor
Atmospheric bubbling fluidized bed coal combustion of a bituminous coal and anthracite with
particle diameters in the range 500-4000 ím was investigated in a pilot-plant facility. The
experiments were conducted at steady-state conditions using three excess air levels (10, 25, and
50%) and bed temperatures in the 750-900 °C range. Combustion air was staged, with primary
air accounting for 100, 80, and 60% of total combustion air. For both types of coal, high NO
concentrations were found inside the bed. In general, the NO concentration decreased monotonically
along the freeboard and toward the exit flue; however, during combustion with high air
staging and low to moderate excess air, a significant additional NO formation occurred near the
secondary air injection point. The results show that the bed temperature increase does not affect
the NO flue gas concentration significantly. There is a positive correlation between excess air
and the NO flue gas concentration. The air staging operation is very effective in lowering the
NO flue gas, but there is a limit for the first stage stoichiometry below which the NO flue gas
starts rising again. This effect could be related with the coal rank
Importance of Vanadium-Catalyzed Oxidation of SO2 to SO3 in Two-Stroke Marine Diesel Engines
Low-speed marine diesel engines are mostly operated on heavy fuel oils, which have a high content of sulfur and ash, including trace amounts of vanadium, nickel, and aluminum. In particular, vanadium oxides could catalyze in-cylinder oxidation of SO2 to SO3, promoting the formation of sulfuric acid and enhancing problems of corrosion. In the present work, the kinetics of the catalyzed oxidation was studied in a fixed-bed reactor at atmospheric pressure. Vanadium oxide nanoparticles were synthesized by spray flame pyrolysis, i.e., by a mechanism similar to the mechanism leading to the formation of the catalytic species within the engine. Experiments with different particle compositions (vanadium/sodium ratio) and temperatures (300–800 °C) show that both the temperature and sodium content have a major impact on the oxidation rate. Kinetic parameters for the catalyzed reaction are determined, and the proposed kinetic model fits well with the experimental data. The impact of the catalytic reaction is studied with a phenomenological zero-dimensional (0D) engine model, where fuel oxidation and SOx formation is modeled with a comprehensive gas-phase reaction mechanism. Results indicate that the oxidation of SO2 to SO3 in the cylinder is dominated by gas-phase reactions and that the vanadium-catalyzed reaction is at most a very minor pathway
Estudio de la oxidación de SO2 a SO3 con catalizadores basados en vanadio. Aplicación a motores marinos diésel de dos tiempos
Los grandes barcos utilizan generalmente motores diesel de dos tiempos, funcionan con fuelóleo pesado, que contiene grandes cantidades de azufre y vanadio. Por ello, es posible que se de lugar a la formación de ácido sulfúrico y que lleve a la llamada corrosión fría. Este trabajo pretende determinar la influencia de la presencia de vanadio sobre la conversión de SO2 y, por tanto, sobre la corrosió fría
- …
