18 research outputs found

    Using graph neural networks to reconstruct charged pion showers in the CMS High Granularity Calorimeter

    No full text
    A novel method to reconstruct the energy of hadronic showersin the CMS High Granularity Calorimeter (HGCAL) is presented. TheHGCAL is a sampling calorimeter with very fine transverse andlongitudinal granularity. The active media are silicon sensors andscintillator tiles readout by SiPMs and the absorbers are acombination of lead and Cu/CuW in the electromagnetic section, andsteel in the hadronic section. The shower reconstruction method isbased on graph neural networks and it makes use of a dynamicreduction network architecture. It is shown that the algorithm isable to capture and mitigate the main effects that normally hinderthe reconstruction of hadronic showers using classicalreconstruction methods, by compensating for fluctuations in themultiplicity, energy, and spatial distributions of the shower'sconstituents. The performance of the algorithm is evaluated usingtest beam data collected in 2018 prototype of the CMS HGCALaccompanied by a section of the CALICE AHCAL prototype. Thecapability of the method to mitigate the impact of energy leakagefrom the calorimeter is also demonstrated

    Using graph neural networks to reconstruct charged pion showers in the CMS High Granularity Calorimeter

    Get PDF
    A novel method to reconstruct the energy of hadronic showers in the CMS High Granularity Calorimeter (HGCAL) is presented. The HGCAL is a sampling calorimeter with very fine transverse and longitudinal granularity. The active media are silicon sensors and scintillator tiles readout by SiPMs and the absorbers are a combination of lead and Cu/CuW in the electromagnetic section, and steel in the hadronic section. The shower reconstruction method is based on graph neural networks and it makes use of a dynamic reduction network architecture. It is shown that the algorithm is able to capture and mitigate the main effects that normally hinder the reconstruction of hadronic showers using classical reconstruction methods, by compensating for fluctuations in the multiplicity, energy, and spatial distributions of the shower’s constituents. The performance of the algorithm is evaluated using test beam data collected in 2018 prototype of the CMS HGCAL accompanied by a section of the CALICE AHCAL prototype. The capability of the method to mitigate the impact of energy leakage from the calorimeter is also demonstrated

    Using graph neural networks to reconstruct charged pion showers in the CMS High Granularity Calorimeter

    No full text

    Using graph neural networks to reconstruct charged pion showers in the CMS High Granularity Calorimeter

    No full text
    A novel method to reconstruct the energy of hadronic showers in the CMS High Granularity Calorimeter (HGCAL) is presented. The HGCAL is a sampling calorimeter with very fine transverse and longitudinal granularity. The active media are silicon sensors and scintillator tiles readout by SiPMs and the absorbers are a combination of lead and Cu/CuW in the electromagnetic section, and steel in the hadronic section. The shower reconstruction method is based on graph neural networks and it makes use of a dynamic reduction network architecture. It is shown that the algorithm is able to capture and mitigate the main effects that normally hinder the reconstruction of hadronic showers using classical reconstruction methods, by compensating for fluctuations in the multiplicity, energy, and spatial distributions of the shower's constituents. The performance of the algorithm is evaluated using test beam data collected in 2018 prototype of the CMS HGCAL accompanied by a section of the CALICE AHCAL prototype. The capability of the method to mitigate the impact of energy leakage from the calorimeter is also demonstrated

    Prevalence of Childhood Affective disorders in Turkey: An epidemiological study

    No full text
    Aim: To determine the prevalence of affective disorders in Turkey among a representative sample of Turkish population. Methods: This study was conducted as a part of the “The Epidemiology of Childhood Psychopathology in Turkey” (EPICPAT-T) Study, which was designed by the Turkish Association of Child and Adolescent Mental Health. The inclusion criterion was being a student between the second and fourth grades in the schools assigned as study centers. The assessment tools used were the K-SADS-PL, and a sociodemographic form that was designed by the authors. Impairment was assessed via a 3 point-Likert type scale independently rated by a parent and a teacher. Results: A total of 5842 participants were included in the analyses. The prevalence of affective disorders was 2.5 % without considering impairment and 1.6 % when impairment was taken into account. In our sample, the diagnosis of bipolar disorder was lacking, thus depressive disorders constituted all the cases. Among depressive disorders with impairment, major depressive disorder (MDD) (prevalence of 1.06%) was the most common, followed by dysthymia (prevalence of 0.2%), adjustment disorder with depressive features (prevalence of 0.17%), and depressive disorder-NOS (prevalence of 0.14%). There were no statistically significant gender differences for depression. Maternal psychopathology and paternal physical illness were predictors of affective disorders with pervasive impairment. Conclusion: MDD was the most common depressive disorder among Turkish children in this nationwide epidemiological study. This highlights the severe nature of depression and the importance of early interventions. Populations with maternal psychopathology and paternal physical illness may be the most appropriate targets for interventions to prevent and treat depression in children and adolescents. © 201

    Prevalence of Childhood Affective disorders in Turkey: An epidemiological study.

    No full text

    Prevalence of Childhood Affective disorders in Turkey: An epidemiological study.

    No full text

    Using graph neural networks to reconstruct charged pion showers in the CMS High Granularity Calorimeter

    No full text
    International audienceA novel method to reconstruct the energy of hadronic showers in the CMS High Granularity Calorimeter (HGCAL) is presented. The HGCAL is a sampling calorimeter with very fine transverse and longitudinal granularity. The active media are silicon sensors and scintillator tiles readout by SiPMs and the absorbers are a combination of lead and Cu/CuW in the electromagnetic section, and steel in the hadronic section. The shower reconstruction method is based on graph neural networks and it makes use of a dynamic reduction network architecture. It is shown that the algorithm is able to capture and mitigate the main effects that normally hinder the reconstruction of hadronic showers using classical reconstruction methods, by compensating for fluctuations in the multiplicity, energy, and spatial distributions of the shower's constituents. The performance of the algorithm is evaluated using test beam data collected in 2018 prototype of the CMS HGCAL accompanied by a section of the CALICE AHCAL prototype. The capability of the method to mitigate the impact of energy leakage from the calorimeter is also demonstrated
    corecore