842 research outputs found
Derivation of a Matrix Product Representation for the Asymmetric Exclusion Process from Algebraic Bethe Ansatz
We derive, using the algebraic Bethe Ansatz, a generalized Matrix Product
Ansatz for the asymmetric exclusion process (ASEP) on a one-dimensional
periodic lattice. In this Matrix Product Ansatz, the components of the
eigenvectors of the ASEP Markov matrix can be expressed as traces of products
of non-commuting operators. We derive the relations between the operators
involved and show that they generate a quadratic algebra. Our construction
provides explicit finite dimensional representations for the generators of this
algebra.Comment: 16 page
Meander, Folding and Arch Statistics
The statistics of meander and related problems are studied as particular
realizations of compact polymer chain foldings. This paper presents a general
discussion of these topics, with a particular emphasis on three points: (i) the
use of a direct recursive relation for building (semi) meanders (ii) the
equivalence with a random matrix model (iii) the exact solution of simpler
related problems, such as arch configurations or irreducible meanders.Comment: 82 pages, uuencoded, uses harvmac (l mode) and epsf, 26+7 figures
include
Meanders and the Temperley-Lieb algebra
The statistics of meanders is studied in connection with the Temperley-Lieb
algebra. Each (multi-component) meander corresponds to a pair of reduced
elements of the algebra. The assignment of a weight per connected component
of meander translates into a bilinear form on the algebra, with a Gram matrix
encoding the fine structure of meander numbers. Here, we calculate the
associated Gram determinant as a function of , and make use of the
orthogonalization process to derive alternative expressions for meander numbers
as sums over correlated random walks.Comment: 85p, uuencoded, uses harvmac (l mode) and epsf, 88 figure
Exactly solvable model with two conductor-insulator transitions driven by impurities
We present an exact analysis of two conductor-insulator transitions in the
random graph model. The average connectivity is related to the concentration of
impurities. The adjacency matrix of a large random graph is used as a hopping
Hamiltonian. Its spectrum has a delta peak at zero energy. Our analysis is
based on an explicit expression for the height of this peak, and a detailed
description of the localized eigenvectors and of their contribution to the
peak. Starting from the low connectivity (high impurity density) regime, one
encounters an insulator-conductor transition for average connectivity
1.421529... and a conductor-insulator transition for average connectivity
3.154985.... We explain the spectral singularity at average connectivity
e=2.718281... and relate it to another enumerative problem in random graph
theory, the minimal vertex cover problem.Comment: 4 pages revtex, 2 fig.eps [v2: new title, changed intro, reorganized
text
A computer-assisted motivational social network intervention to reduce alcohol, drug and HIV risk behaviors among Housing First residents.
BackgroundIndividuals transitioning from homelessness to housing face challenges to reducing alcohol, drug and HIV risk behaviors. To aid in this transition, this study developed and will test a computer-assisted intervention that delivers personalized social network feedback by an intervention facilitator trained in motivational interviewing (MI). The intervention goal is to enhance motivation to reduce high risk alcohol and other drug (AOD) use and reduce HIV risk behaviors.Methods/designIn this Stage 1b pilot trial, 60 individuals that are transitioning from homelessness to housing will be randomly assigned to the intervention or control condition. The intervention condition consists of four biweekly social network sessions conducted using MI. AOD use and HIV risk behaviors will be monitored prior to and immediately following the intervention and compared to control participants' behaviors to explore whether the intervention was associated with any systematic changes in AOD use or HIV risk behaviors.DiscussionSocial network health interventions are an innovative approach for reducing future AOD use and HIV risk problems, but little is known about their feasibility, acceptability, and efficacy. The current study develops and pilot-tests a computer-assisted intervention that incorporates social network visualizations and MI techniques to reduce high risk AOD use and HIV behaviors among the formerly homeless. CLINICALTRIALS.Gov identifierNCT02140359
Time-Dependent Density Functional Theory for Driven Lattice Gas Systems with Interactions
We present a new method to describe the kinetics of driven lattice gases with
particle-particle interactions beyond hard-core exclusions. The method is based
on the time-dependent density functional theory for lattice systems and allows
one to set up closed evolution equations for mean site occupation numbers in a
systematic manner. Application of the method to a totally asymmetric site
exclusion process with nearest-neighbor interactions yields predictions for the
current-density relation in the bulk, the phase diagram of non-equilibrium
steady states and the time evolution of density profiles that are in good
agreement with results from kinetic Monte Carlo simulations.Comment: 11 pages, 3 figure
Distribution of exchange energy in a bond-alternating S=1 quantum spin chain
The quasi-one-dimensional bond-alternating S=1 quantum antiferromagnet NTENP
is studied by single crystal inelastic neutron scattering. Parameters of the
measured dispersion relation for magnetic excitations are compared to existing
numerical results and used to determine the magnitude of bond-strength
alternation. The measured neutron scattering intensities are also analyzed
using the 1st-moment sum rules for the magnetic dynamic structure factor, to
directly determine the modulation of ground state exchange energies. These
independently determined modulation parameters characterize the level of spin
dimerization in NTENP. First-principle DMRG calculations are used to study the
relation between these two quantities.Comment: 10 pages, 10 figure
Power Spectra of a Constrained Totally Asymmetric Simple Exclusion Process
To synthesize proteins in a cell, an mRNA has to work with a finite pool of
ribosomes. When this constraint is included in the modeling by a totally
asymmetric simple exclusion process (TASEP), non-trivial consequences emerge.
Here, we consider its effects on the power spectrum of the total occupancy,
through Monte Carlo simulations and analytical methods. New features, such as
dramatic suppressions at low frequencies, are discovered. We formulate a theory
based on a linearized Langevin equation with discrete space and time. The good
agreement between its predictions and simulation results provides some insight
into the effects of finite resoures on a TASEP.Comment: 4 pages, 2 figures v2: formatting change
S(k) for Haldane Gap Antiferromagnets: Large-scale Numerical Results vs. Field Theory and Experiment
The structure function, S(k), for the s=1, Haldane gap antiferromagnetic
chain, is measured accurately using the recent density matrix renormalization
group method, with chain-length 100. Excellent agreement with the nonlinear
model prediction is obtained, both at where a single
magnon process dominates and at where a two magnon process
dominates. We repeat our calculation with crystal field anisotropy chosen to
model NENP, obtaining good agreement with both field theory predictions and
recent experiments. Correlation lengths, gaps and velocities are determined for
both polarizations.Comment: 11 pages, 3 postscript figures included, REVTEX 3.0, UBCTP-93-02
- …
