1,349 research outputs found

    Kinetics of occupancy of defect states in poly(3-hexylthiophene): fullerene solar cells

    Get PDF
    Energetics and kinetics of defects in the effective band gap of organic bulk heterojunctions are determined by means of capacitance methods. The technique consists of calculating the junction capacitance derivative with respect to the angular frequency of the small voltage perturbation applied to thin film poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester solar cells, varying the temperature. The analysis reveals the presence of defect bands (shallow acceptors) centered at E0 = 35 meV above the highest-occupied molecular orbital level of P3HT. The total density of defects results of order 1016 cm− 3. Characteristic frequency is obtained to be situated within the range of 1–10 Hz. Defect bands acting as negatively charged levels are responsible for the p-doping of the active layer and the band-bending near the cathode contact, as derived from Mott–Schottky capacitance–voltage analysis

    Genomic epidemiology of a protracted hospital outbreak caused by multidrug-resistant Acinetobacter baumannii in Birmingham, England

    Get PDF
    BACKGROUND: Multidrug-resistant Acinetobacter baumannii commonly causes hospital outbreaks. However, within an outbreak, it can be difficult to identify the routes of cross-infection rapidly and accurately enough to inform infection control. Here, we describe a protracted hospital outbreak of multidrug-resistant A. baumannii, in which whole-genome sequencing (WGS) was used to obtain a high-resolution view of the relationships between isolates. METHODS: To delineate and investigate the outbreak, we attempted to genome-sequence 114 isolates that had been assigned to the A. baumannii complex by the Vitek2 system and obtained informative draft genome sequences from 102 of them. Genomes were mapped against an outbreak reference sequence to identify single nucleotide variants (SNVs). RESULTS: We found that the pulsotype 27 outbreak strain was distinct from all other genome-sequenced strains. Seventy-four isolates from 49 patients could be assigned to the pulsotype 27 outbreak on the basis of genomic similarity, while WGS allowed 18 isolates to be ruled out of the outbreak. Among the pulsotype 27 outbreak isolates, we identified 31 SNVs and seven major genotypic clusters. In two patients, we documented within-host diversity, including mixtures of unrelated strains and within-strain clouds of SNV diversity. By combining WGS and epidemiological data, we reconstructed potential transmission events that linked all but 10 of the patients and confirmed links between clinical and environmental isolates. Identification of a contaminated bed and a burns theatre as sources of transmission led to enhanced environmental decontamination procedures. CONCLUSIONS: WGS is now poised to make an impact on hospital infection prevention and control, delivering cost-effective identification of routes of infection within a clinically relevant timeframe and allowing infection control teams to track, and even prevent, the spread of drug-resistant hospital pathogens

    Characterizing receptive field selectivity in area V2

    Get PDF
    The computations performed by neurons in area V1 are reasonably well understood, but computation in subsequent areas such as V2 have been more difficult to characterize. When stimulated with visual stimuli traditionally used to investigate V1, such as sinusoidal gratings, V2 neurons exhibit similar selectivity (but with larger receptive fields, and weaker responses) relative to V1 neurons. However, we find that V2 responses to synthetic stimuli designed to produce naturalistic patterns of joint activity in a model V1 population are more vigorous than responses to control stimuli that lacked this naturalistic structure (Freeman, et. al. 2013). Armed with this signature of V2 computation, we have been investigating how it might arise from canonical computational elements commonly used to explain V1 responses. The invariance of V1 complex cell responses to spatial phase has been previously captured by summing over multiple “subunits” (rectified responses of simple cell-like filters with the same orientation and spatial frequency selectivity, but differing in their receptive field locations). We modeled V2 responses using a similar architecture: V2 subunits were formed from the rectified responses of filters computing the derivatives of the V1 response map over frequencies, orientations, and spatial positions. A V2 complex cell” sums the output of such subunits across frequency, orientation, and position. This model can qualitatively account for much of the behavior of our sample of recorded V2 neurons, including their V1-like spectral tuning in response to sinusoidal gratings as well as the pattern of increased sensitivity to naturalistic images

    Genome analysis and physiological comparison of Alicycliphilus denitrificans strains BC and K601T

    Get PDF
    The genomes of the Betaproteobacteria Alicycliphilus denitrificans strains BC and K601T have been sequenced to get insight into the physiology of the two strains. Strain BC degrades benzene with chlorate as electron acceptor. The cyclohexanol-degrading denitrifying strain K601T is not able to use chlorate as electron acceptor, while strain BC cannot degrade cyclohexanol. The 16S rRNA sequences of strains BC and K601T are identical and the fatty acid methyl ester patterns of the strains are similar. Basic Local Alignment Search Tool (BLAST) analysis of predicted open reading frames of both strains showed most hits with Acidovorax sp. JS42, a bacterium that degrades nitro-aromatics. The genomes include strain-specific plasmids (pAlide201 in strain K601T and pAlide01 and pAlide02 in strain BC). Key genes of chlorate reduction in strain BC were located on a 120 kb megaplasmid (pAlide01), which was absent in strain K601T. Genes involved in cyclohexanol degradation were only found in strain K601T. Benzene and toluene are degraded via oxygenase-mediated pathways in both strains. Genes involved in the meta-cleavage pathway of catechol are present in the genomes of both strains. Strain BC also contains all genes of the ortho-cleavage pathway. The large number of mono- and dioxygenase genes in the genomes suggests that the two strains have a broader substrate range than known thus far.This research was supported by the Technology Foundation, the Applied Science Division (STW) of the Netherlands Organization for Scientific Research (NWO), project number 08053, the graduate school WIMEK (Wageningen Institute for Environment and Climate Research, which is part of SENSE Research School for Socio-Economic and Natural Sciences of the Environment, www.wimek-new.wur.nl and www.sense.nl), SKB (Dutch Centre for Soil Quality Management and Knowledge Transfer, www.skbodem.nl) and the Consolider project CSD-2007-00055. The research was incorporated in the TRIAS (TRIpartite Approaches 469 toward Soil systems processes) program (http://www.nwo.nl/en/research-and-results/programmes/alw/trias-tripartite-approach-to-soil-system-processes/index. html). Flávia Talarico Saia was supported by a FAPESP (the State of São Paulo Research Foundation) scholarship (2006-01997/5). The work conducted by the DOE JGI is supported by the Office of Science of the United States Department of Energy under contract number DE-AC02-05CH11231. Alfons Stams acknowledges support by an ERC (European Research Counsil) advanced grant (project 323009). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Molecular phylogenetics and temporal diversification in the genus Aeromonas based on the sequences of five housekeeping genes

    Get PDF
    Several approaches have been developed to estimate both the relative and absolute rates of speciation and extinction within clades based on molecular phylogenetic reconstructions of evolutionary relationships, according to an underlying model of diversification. However, the macroevolutionary models established for eukaryotes have scarcely been used with prokaryotes. We have investigated the rate and pattern of cladogenesis in the genus Aeromonas (γ-Proteobacteria, Proteobacteria, Bacteria) using the sequences of five housekeeping genes and an uncorrelated relaxed-clock approach. To our knowledge, until now this analysis has never been applied to all the species described in a bacterial genus and thus opens up the possibility of establishing models of speciation from sequence data commonly used in phylogenetic studies of prokaryotes. Our results suggest that the genus Aeromonas began to diverge between 248 and 266 million years ago, exhibiting a constant divergence rate through the Phanerozoic, which could be described as a pure birth process
    corecore