1,093 research outputs found
Optical realization of the two-site Bose-Hubbard model in waveguide lattices
A classical realization of the two-site Bose-Hubbard Hamiltonian, based on
light transport in engineered optical waveguide lattices, is theoretically
proposed. The optical lattice enables a direct visualization of the
Bose-Hubbard dynamics in Fock space.Comment: to be published, J Phys. B (Fast Track Communication
Wave packet evolution in non-Hermitian quantum systems
The quantum evolution of the Wigner function for Gaussian wave packets
generated by a non-Hermitian Hamiltonian is investigated. In the semiclassical
limit this yields the non-Hermitian analog of the Ehrenfest
theorem for the dynamics of observable expectation values. The lack of
Hermiticity reveals the importance of the complex structure on the classical
phase space: The resulting equations of motion are coupled to an equation of
motion for the phase space metric---a phenomenon having no analog in Hermitian
theories.Comment: Example added, references updated, 4 pages, 2 figure
Breakdown of adiabatic transfer of light in waveguides in the presence of absorption
In atomic physics, adiabatic evolution is often used to achieve a robust and
efficient population transfer. Many adiabatic schemes have also been
implemented in optical waveguide structures. Recently there has been increasing
interests in the influence of decay and absorption, and their engineering
applications. Here it is shown that even a small decay can significantly
influence the dynamical behaviour of a system, above and beyond a mere change
of the overall norm. In particular, a small decay can lead to a breakdown of
adiabatic transfer schemes, even when both the spectrum and the eigenfunctions
are only sightly modified. This is demonstrated for the generalization of a
STIRAP scheme that has recently been implemented in optical waveguide
structures. Here the question how an additional absorption in either the
initial or the target waveguide influences the transfer property of the scheme
is addressed. It is found that the scheme breaks down for small values of the
absorption at a relatively sharp threshold, which can be estimated by simple
analytical arguments.Comment: 8 pages, 7 figures, revised and extende
Control of unstable macroscopic oscillations in the dynamics of three coupled Bose condensates
We study the dynamical stability of the macroscopic quantum oscillations
characterizing a system of three coupled Bose-Einstein condensates arranged
into an open-chain geometry. The boson interaction, the hopping amplitude and
the central-well relative depth are regarded as adjustable parameters. After
deriving the stability diagrams of the system, we identify three mechanisms to
realize the transition from an unstable to stable behavior and analyze specific
configurations that, by suitably tuning the model parameters, give rise to
macroscopic effects which are expected to be accessible to experimental
observation. Also, we pinpoint a system regime that realizes a
Josephson-junction-like effect. In this regime the system configuration do not
depend on the model interaction parameters, and the population oscillation
amplitude is related to the condensate-phase difference. This fact makes
possible estimating the latter quantity, since the measure of the oscillating
amplitudes is experimentally accessible.Comment: 25 pages, 12 figure
Nonlinear Schr\"odinger equation for a PT symmetric delta-functions double well
The time-independent nonlinear Schr\"odinger equation is solved for two
attractive delta-function shaped potential wells where an imaginary loss term
is added in one well, and a gain term of the same size but with opposite sign
in the other. We show that for vanishing nonlinearity the model captures all
the features known from studies of PT symmetric optical wave guides, e.g., the
coalescence of modes in an exceptional point at a critical value of the
loss/gain parameter, and the breaking of PT symmetry beyond. With the
nonlinearity present, the equation is a model for a Bose-Einstein condensate
with loss and gain in a double well potential. We find that the nonlinear
Hamiltonian picks as stationary eigenstates exactly such solutions which render
the nonlinear Hamiltonian itself PT symmetric, but observe coalescence and
bifurcation scenarios different from those known from linear PT symmetric
Hamiltonians.Comment: 16 pages, 9 figures, to be published in Journal of Physics
Kicked Bose-Hubbard systems and kicked tops -- destruction and stimulation of tunneling
In a two-mode approximation, Bose-Einstein condensates (BEC) in a double-well
potential can be described by a many particle Hamiltonian of Bose-Hubbard type.
We focus on such a BEC whose interatomic interaction strength is modulated
periodically by -kicks which represents a realization of a kicked top.
In the (classical) mean-field approximation it provides a rich mixed phase
space dynamics with regular and chaotic regions. By increasing the
kick-strength a bifurcation leads to the appearance of self-trapping states
localized on regular islands. This self-trapping is also found for the many
particle system, however in general suppressed by coherent many particle
tunneling oscillations. The tunneling time can be calculated from the
quasi-energy splitting of the corresponding Floquet states. By varying the
kick-strength these quasi-energy levels undergo both avoided and even actual
crossings. Therefore stimulation or complete destruction of tunneling can be
observed for this many particle system
From Cooperative Scans to Predictive Buffer Management
In analytical applications, database systems often need to sustain workloads
with multiple concurrent scans hitting the same table. The Cooperative Scans
(CScans) framework, which introduces an Active Buffer Manager (ABM) component
into the database architecture, has been the most effective and elaborate
response to this problem, and was initially developed in the X100 research
prototype. We now report on the the experiences of integrating Cooperative
Scans into its industrial-strength successor, the Vectorwise database product.
During this implementation we invented a simpler optimization of concurrent
scan buffer management, called Predictive Buffer Management (PBM). PBM is based
on the observation that in a workload with long-running scans, the buffer
manager has quite a bit of information on the workload in the immediate future,
such that an approximation of the ideal OPT algorithm becomes feasible. In the
evaluation on both synthetic benchmarks as well as a TPC-H throughput run we
compare the benefits of naive buffer management (LRU) versus CScans, PBM and
OPT; showing that PBM achieves benefits close to Cooperative Scans, while
incurring much lower architectural impact.Comment: VLDB201
Biorthogonal quantum mechanics
The Hermiticity condition in quantum mechanics required for the characterization of (a) physical observables and (b) generators of unitary motions can be relaxed into a wider class of operators whose eigenvalues are real and whose eigenstates are complete. In this case, the orthogonality of eigenstates is replaced by the notion of biorthogonality that defines the relation between the Hilbert space of states and its dual space. The resulting quantum theory, which might appropriately be called 'biorthogonal quantum mechanics', is developed here in some detail in the case for which the Hilbert-space dimensionality is finite. Specifically, characterizations of probability assignment rules, observable properties, pure and mixed states, spin particles, measurements, combined systems and entanglements, perturbations, and dynamical aspects of the theory are developed. The paper concludes with a brief discussion on infinite-dimensional systems. © 2014 IOP Publishing Ltd
Engaging Communities Around Austerity and Alternatives in Quebec: Lessons from Thirty Years of Consultations
- …
