733 research outputs found
Phase Behavior of Short Range Square Well Model
Various Monte Carlo techniques are used to determine the complete phase
diagrams of the square well model for the attractive ranges
and . The results for the latter case are in agreement with
earlier Monte Carlo simulations for the fluid-fluid coexistence curve and yield
new results for the liquidus-solidus lines. Our results for
are new. We find that the fluid-fluid critical point is metastable for both
cases, with the case being just below the threshold value for
metastability. We compare our results with prior studies and with experimental
results for the gamma-II crystallin.Comment: 8 figures, 1 tabl
0+ states and collective bands in 228Th studied by the (p,t) reaction
The excitation spectra in the deformed nucleus 228Th have been studied by
means of the (p,t)-reaction, using the Q3D spectrograph facility at the Munich
Tandem accelerator. The angular distributions of tritons were measured for
about 110 excitations seen in the triton spectra up to 2.5 MeV. Firm 0+
assignments are made for 17 excited states by comparison of experimental
angular distributions with the calculated ones using the CHUCK3 code.
Assignments up to spin 6+ are made for other states. Sequences of states are
selected which can be treated as rotational bands and as multiplets of
excitations. Moments of inertia have been derived from these sequences, whose
values may be considered as evidence of the two-phonon nature of most 0+
excitations. Experimental data are compared with interacting boson model and
quasiparticle-phonon model calculations and with experimental data for 229Pa.Comment: 21 pages, 14 figure
Experimental and computational analyses reveal that environmental restrictions shape HIV-1 spread in 3D cultures
Here, using an integrative experimental and computational approach, Imle et al. show how cell motility and density affect HIV cell-associated transmission in a three-dimensional tissue-like culture system of CD4+ T cells and collagen, and how different collagen matrices restrict infection by cell-free virions
Circadian rhythms and sleep regulation in seasonal affective disorder
Seasonal affective disorder (SAD) is characterised by recurrent episodes in autumn and winter of depression, hypersomnia, augmented appetite with carbohydrate craving, and weight gain, and can be successfully treated with bright light. Circadian rhythm hypotheses (summarized in) have stimulated research into the pathophysiology of SAD, postulating that: 1.The illness is a consequence of delayed phase position, 2.It is correlated with diminished circadian amplitude, or 3.It results from changes in the nocturnal duration between dusk and dawn e.g. of low core body temperature or melatonin secretion. Light is considered to act directly on the circadian pacemaker (‘Process C') and not on sleep dependent processes (‘Process S'). Thus successful treatment of SAD must act via mechanisms within known retinohypothalamic pathways. Conversely, emergence of SAD symptoms may reflect inappropriate neurobiological response to decreasing daylengt
Comparative studies on the structure of an upland African stream ecosystem
Upland stream systems have been extensively investigated in Europe, North America and Australasia and many of the central ideas concerning their function are based on these systems. One central paradigm, the river continuum concept is ultimately derived from those North American streams whose catchments remain forested with native vegetation. Streams of the tropics may or may not fit the model. They have been little studied. The Amani Nature Reserve in the East Usambara Mountains of north-eastern Tanzania offers an opportunity to bring these naturally forested systems to the attention of the ecological community. This article describes a comparison made between two lengths of the River Dodwe in this area. The work was carried out by a group of postgraduate students from eighteen European and African countries with advice from five staff members, as part of a course organised by the Tropical Biology Association. Rigorous efforts were made to standardise techniques, in a situation where equipment and laboratory facilities were very basic, through a management structure and deliberate allocation of work to specialists in each area.The article offers a summary of invertebrate communities found in the stream and its biomass. Crabs seem to be the key organism in both sections of the streams
Spatial heterogeneity and peptide availability determine CTL killing efficiency in vivo
The rate at which a cytotoxic T lymphocyte (CTL) can survey for infected cells is a key ingredient of models of vertebrate immune responses to intracellular pathogens. Estimates have been obtained using in vivo cytotoxicity assays in which peptide-pulsed splenocytes are killed by CTL in the spleens of immunised mice. However the spleen is a heterogeneous environment and splenocytes comprise multiple cell types. Are some cell types intrinsically more susceptible to lysis than others? Quantitatively, what impacts are made by the spatial distribution of targets and effectors, and the level of peptide-MHC on the target cell surface? To address these questions we revisited the splenocyte killing assay, using CTL specific for an epitope of influenza virus. We found that at the cell population level T cell targets were killed more rapidly than B cells. Using modeling, quantitative imaging and in vitro killing assays we conclude that this difference in vivo likely reflects different migratory patterns of targets within the spleen and a heterogeneous distribution of CTL, with no detectable difference in the intrinsic susceptibilities of the two populations to lysis. Modeling of the stages involved in the detection and killing of peptide-pulsed targets in vitro revealed that peptide dose influenced the ability of CTL to form conjugates with targets but had no detectable effect on the probability that conjugation resulted in lysis, and that T cell targets took longer to lyse than B cells. We also infer that incomplete killing in vivo of cells pulsed with low doses of peptide may be due to a combination of heterogeneity in peptide uptake and the dissociation, but not internalisation, of peptide-MHC complexes. Our analyses demonstrate how population-averaged parameters in models of immune responses can be dissected to account for both spatial and cellular heterogeneity
Nuclear Polarization of Molecular Hydrogen Recombined on a Non-metallic Surface
The nuclear polarization of molecules formed by recombination
of nuclear polarized H atoms on the surface of a storage cell initially coated
with a silicon-based polymer has been measured by using the longitudinal
double-spin asymmetry in deep-inelastic positron-proton scattering. The
molecules are found to have a substantial nuclear polarization, which is
evidence that initially polarized atoms retain their nuclear polarization when
absorbed on this type of surfac
Evidence for Quark-Hadron Duality in the Proton Spin Asymmetry
Spin-dependent lepton-nucleon scattering data have been used to investigate
the validity of the concept of quark-hadron duality for the spin asymmetry
. Longitudinally polarised positrons were scattered off a longitudinally
polarised hydrogen target for values of between 1.2 and 12 GeV and
values of between 1 and 4 GeV. The average double-spin asymmetry in
the nucleon resonance region is found to agree with that measured in
deep-inelastic scattering at the same values of the Bjorken scaling variable
. This finding implies that the description of in terms of quark
degrees of freedom is valid also in the nucleon resonance region for values of
above 1.6 GeV.Comment: 5 pages, 1 eps figure, table added, new references added, in print in
Phys. Rev. Let
- …
