552 research outputs found
Rheology and Contact Lifetime Distribution in Dense Granular Flows
We study the rheology and distribution of interparticle contact lifetimes for
gravity-driven, dense granular flows of non-cohesive particles down an inclined
plane using large-scale, three dimensional, granular dynamics simulations.
Rather than observing a large number of long-lived contacts as might be
expected for dense flows, brief binary collisions predominate. In the hard
particle limit, the rheology conforms to Bagnold scaling, where the shear
stress is quadratic in the strain rate. As the particles are made softer,
however, we find significant deviations from Bagnold rheology; the material
flows more like a viscous fluid. We attribute this change in the collective
rheology of the material to subtle changes in the contact lifetime distribution
involving the increasing lifetime and number of the long-lived contacts in the
softer particle systems.Comment: 4 page
Structure of bottle-brush brushes under good solvent conditions. A molecular dynamics study
We report a simulation study for bottle-brush polymers grafted on a rigid
backbone. Using a standard coarse-grained bead-spring model extensive molecular
dynamics simulations for such macromolecules under good solvent conditions are
performed. We consider a broad range of parameters and present numerical
results for the monomer density profile, density of the untethered ends of the
grafted flexible backbones and the correlation function describing the range
that neighboring grafted bottle-brushes are affected by the presence of the
others due to the excluded volume interactions. The end beads of the flexible
backbones of the grafted bottle-brushes do not access the region close to the
rigid backbone due to the presence of the side chains of the grafted
bottle-brush polymers, which stretch further the chains in the radial
directions. Although a number of different correlation lengths exist as a
result of the complex structure of these macromolecules, their properties can
be tuned with high accuracy in good solvents. Moreover, qualitative differences
with "typical" bottle-brushes are discussed. Our results provide a first
approach to characterizing such complex macromolecules with a standard bead
spring model.Comment: To appear in Journal of Physics Condensed Matter (2011
Rheology of Ring Polymer Melts: From Linear Contaminants to Ring/Linear Blends
Ring polymers remain a major challenge to our current understanding of
polymer dynamics. Experimental results are difficult to interpret because of
the uncertainty in the purity and dispersity of the sample. Using both
equilibrium and non-equilibrium molecular dynamics simulations we have
systematically investigated the structure, dynamics and rheology of perfectly
controlled ring/linear polymer blends with chains of such length and
flexibility that the number of entanglements is up to about 14 per chain, which
is comparable to experimental systems examined in the literature. The smallest
concentration at which linear contaminants increase the zero-shear viscosity of
a ring polymer melt of these chain lengths by 10% is approximately one-fifth of
their overlap concentration. When the two architectures are present in equal
amounts the viscosity of the blend is approximately twice as large as that of
the pure linear melt. At this concentration the diffusion coefficient of the
rings is found to decrease dramatically, while the static and dynamic
properties of the linear polymers are mostly unaffected. Our results are
supported by a primitive path analysis.Comment: 5 pages, 4 figures, accepted by PR
Dynamics of n-alkanes: Comparison to Rouse Model
The crossover to Rouse-like behavior for the self-diffusion constant D, the
viscosity , and the equilibrium structural statistics of n-alkanes is studied numerically. For small n the chains are non-Gaussian
and the mean squared end-to-end distance is greater than , where
is the mean squared radius of gyration. As n increases, , where b depends on the interaction model. At constant density, the
Rouse model is used to extract the monomeric friction coefficient and
the viscosity independently from the diffusion constant D and the
longest relaxation time . extracted from D is nearly
independent of chain length while obtained from is much
larger than for small n. The viscosity measured in a non-equilibrium
molecular dynamics simulation is closely approximated by the value of
determined from while inferred from D is smaller for small n.
For n\agt 60, the two estimates for both and agree as
predicted from the Rouse model. D calculated from three interaction models is
studied for increasing and compared to experimental data.Comment: 21 pages, 8 postscript figures, uses revte
Static and dynamic properties of the interface between a polymer brush and a melt of identical chains
Molecular dynamics simulations of a short-chain polymer melt between two
brush-covered surfaces under shear have been performed. The end-grafted
polymers which constitute the brush have the same chemical properties as the
free chains in the melt and provide a soft deformable substrate. Polymer chains
are described by a coarse-grained bead-spring model with Lennard-Jones
interactions between the beads and a FENE potential between nearest neighbors
along the backbone of the chains. The grafting density of the brush layer
offers a way of controlling the behavior of the surface without altering the
molecular interactions. We perform equilibrium and non-equilibrium Molecular
Dynamics simulations at constant temperature and volume using the Dissipative
Particle Dynamics thermostat. The equilibrium density profiles and the behavior
under shear are studied as well as the interdigitation of the melt into the
brush, the orientation on different length scales (bond vectors, radius of
gyration, and end-to-end vector) of free and grafted chains, and velocity
profiles. The viscosity and slippage at the interface are calculated as
functions of grafting density and shear velocity.Comment: 12 pages, submitted to J Chem Phy
Molecular Dynamics Simulation of Compressible Fluid Flow in Two-Dimensional Channels
We study compressible fluid flow in narrow two-dimensional channels using a
novel molecular dynamics simulation method. In the simulation area, an upstream
source is maintained at constant density and temperature while a downstream
reservoir is kept at vacuum. The channel is sufficiently long in the direction
of the flow that the finite length has little effect on the properties of the
fluid in the central region. The simulated system is represented by an
efficient data structure, whose internal elements are created and manipulated
dynamically in a layered fashion. Consequently the code is highly efficient and
manifests completely linear performance in simulations of large systems. We
obtain the steady-state velocity, temperature, and density distributions in the
system. The velocity distribution across the channel is very nearly a quadratic
function of the distance from the center of the channel and reveals velocity
slip at the boundaries; the temperature distribution is only approximately a
quartic function of this distance from the center to the channel. The density
distribution across the channel is non-uniform. We attribute this
non-uniformity to the relatively high Mach number, approximately 0.5, in the
fluid flow. An equation for the density distribution based on simple
compressibility arguments is proposed; its predictions agree well with the
simulation results. Validity of the concept of local dynamic temperature and
the variation of the temperature along the channel are discussed.Comment: 16 pages (in latex) + 8 figures (in a single ps file). Submitted to
the Physical Review
A New Phase of Tethered Membranes: Tubules
We show that fluctuating tethered membranes with {\it any} intrinsic
anisotropy unavoidably exhibit a new phase between the previously predicted
``flat'' and ``crumpled'' phases, in high spatial dimensions where the
crumpled phase exists. In this new "tubule" phase, the membrane is crumpled in
one direction but extended nearly straight in the other. Its average thickness
is with the intrinsic size of the membrane. This phase
is more likely to persist down to than the crumpled phase. In Flory
theory, the universal exponent , which we conjecture is an exact
result. We study the elasticity and fluctuations of the tubule state, and the
transitions into it.Comment: 4 pages, self-unpacking uuencoded compressed postscript file with
figures already inside text; unpacking instructions are at the top of file.
To appear in Phys. Rev. Lett. November (1995
Stresses in Smooth Flows of Dense Granular Media
The form of the stress tensor is investigated in smooth, dense granular flows
which are generated in split-bottom shear geometries. We find that, within a
fluctuation fluidized spatial region, the form of the stress tensor is directly
dictated by the flow field: The stress and strain-rate tensors are co-linear.
The effective friction, defined as the ratio between shear and normal stresses
acting on a shearing plane, is found not to be constant but to vary throughout
the flowing zone. This variation can not be explained by inertial effects, but
appears to be set by the local geometry of the flow field. This is in agreement
with a recent prediction, but in contrast with most models for slow grain
flows, and points to there being a subtle mechanism that selects the flow
profiles.Comment: 5 pages, 4 figure
Molecular Dynamics Simulation Study of Nonconcatenated Ring Polymers in a Melt: I. Statics
Molecular dynamics simulations were conducted to investigate the structural
properties of melts of nonconcatenated ring polymers and compared to melts of
linear polymers. The longest rings were composed of N=1600 monomers per chain
which corresponds to roughly 57 entanglement lengths for comparable linear
polymers. For the rings, the radius of gyration squared was found to scale as N
to the 4/5 power for an intermediate regime and N to the 2/3 power for the
larger rings indicating an overall conformation of a crumpled globule. However,
almost all beads of the rings are "surface beads" interacting with beads of
other rings, a result also in agreement with a primitive path analysis
performed in the following paper (DOI: 10.1063/1.3587138). Details of the
internal conformational properties of the ring and linear polymers as well as
their packing are analyzed and compared to current theoretical models.Comment: 15 pages, 14 figure
Polyelectrolyte Bundles
Using extensive Molecular Dynamics simulations we study the behavior of
polyelectrolytes with hydrophobic side chains, which are known to form
cylindrical micelles in aqueous solution. We investigate the stability of such
bundles with respect to hydrophobicity, the strength of the electrostatic
interaction, and the bundle size. We show that for the parameter range relevant
for sulfonated poly-para-phenylenes (PPP) one finds a stable finite bundle
size. In a more generic model we also show the influence of the length of the
precursor oligomer on the stability of the bundles. We also point out that our
model has close similarities to DNA solutions with added condensing agents,
hinting to the possibility that the size of DNA aggregates is under certain
circumstances thermodynamically limited.Comment: 10 pages, 8 figure
- …
