1,540 research outputs found
An Enhanced Perturbational Study on Spectral Properties of the Anderson Model
The infinite- single impurity Anderson model for rare earth alloys is
examined with a new set of self-consistent coupled integral equations, which
can be embedded in the large expansion scheme ( is the local spin
degeneracy). The finite temperature impurity density of states (DOS) and the
spin-fluctuation spectra are calculated exactly up to the order . The
presented conserving approximation goes well beyond the -approximation
({\em NCA}) and maintains local Fermi-liquid properties down to very low
temperatures. The position of the low lying Abrikosov-Suhl resonance (ASR) in
the impurity DOS is in accordance with Friedel's sum rule. For its shift
toward the chemical potential, compared to the {\em NCA}, can be traced back to
the influence of the vertex corrections. The width and height of the ASR is
governed by the universal low temperature energy scale . Temperature and
degeneracy -dependence of the static magnetic susceptibility is found in
excellent agreement with the Bethe-Ansatz results. Threshold exponents of the
local propagators are discussed. Resonant level regime () and intermediate
valence regime () of the model are thoroughly
investigated as a critical test of the quality of the approximation. Some
applications to the Anderson lattice model are pointed out.Comment: 19 pages, ReVTeX, no figures. 17 Postscript figures available on the
WWW at http://spy.fkp.physik.th-darmstadt.de/~frithjof
From ferromagnetism to spin-density wave: Magnetism in the two channel periodic Anderson model
The magnetic properties of the two-channel periodic Anderson model for
uranium ions, comprised of a quadrupolar and a magnetic doublet are
investigated through the crossover from the mixed-valent to the stable moment
regime using dynamical mean field theory. In the mixed-valent regime
ferromagnetism is found for low carrier concentration on a hyper-cubic lattice.
The Kondo regime is governed by band magnetism with small effective moments and
an ordering vector \q close to the perfect nesting vector. In the stable
moment regime nearest neighbour anti-ferromagnetism dominates for less than
half band filling and a spin density wave transition for larger than half
filling. is governed by the renormalized RKKY energy scale \mu_{eff}^2
^2 J^2\rho_0(\mu).Comment: 4 pages, RevTeX, 3 eps figure
Possible Relevance of Odd Frequency Pairing to Heavy Fermion Superconductivity
What is the character of the gapless quasiparticles in heavy fermion
superconductors (HFSC)? We discuss an odd-frequency pairing interpretation of
HFSC which leads to a two component model for the quasiparticle excitations. In
this picture, line zeroes of unpaired electrons may coexist with gapless
surfaces of paired electrons, with vanishing spin and charge coherence factors
Inelastic Neutron scattering in CeSi_{2-x}Ga_x ferromagnetic Kondo lattice compounds
Inelastic neutron scattering investigation on ferromagnetic Kondo lattice
compounds belonging to CeSi_{2-x}Ga_{x}, x = 0.7, 1.0 and 1.3, system is
reported. The thermal evolution of the quasielastic response shows that the
Kondo interactions dominate over the RKKY interactions with increase in Ga
concentration from 0.7 to 1.3. This is related to the increase in k-f
hybridization with increasing Ga concentration. The high energy response
indicates the ground state to be split by crystal field in all three compounds.
Using the experimental results we have calculated the crystal field parameters
in all three compounds studied here.Comment: 12 Pages Revtex, 2 eps figures
Electrodynamics of electron doped iron-pnictide superconductors: Normal state properties
The electrodynamic properties of Ba(FeCoAs and
Ba(FeNi_{2}T^2m^*/m_b\approx 5$ in the static limit) and scattering rate that does not
disclose a simple power law. The spectral weight shifts to lower energies upon
cooling; a significant fraction is not recovered within the infrared range of
frequencies.Comment: 13 pages, 9 figure
Kinks in the electronic dispersion of the Hubbard model away from half filling
We study kinks in the electronic dispersion of a generic strongly correlated
system by dynamic mean-field theory (DMFT). The focus is on doped systems away
from particle-hole symmetry where valence fluctuations matter potentially.
Three different algorithms are compared to asses their strengths and
weaknesses, as well as to clearly distinguish physical features from
algorithmic artifacts. Our findings extend a view previously established for
half-filled systems where kinks reflect the coupling of the fermionic
quasiparticles to emergent collective modes, which are identified here as spin
fluctuations. Kinks are observed when strong spin fluctuations are present and,
additionally, a separation of energy scales for spin and charge excitations
exists. Both criteria are met by strongly correlated systems close to a
Mott-insulator transition. The energies of the kinks and their doping
dependence fit well to the kinks in the cuprates, which is surprising in view
of the spatial correlations neglected by DMFT.Comment: 13 pages, 15 figure
"Exhaustion" Physics in the Periodic Anderson Model using Iterated Perturbation Theory
We discuss the "exhaustion" problem in the context of the Periodic Anderson
Model using Iterated Perturbation Theory(IPT) within the Dynamical Mean Field
Theory. We find that, despite its limitations, IPT captures the exhaustion
physics, which manifests itself as a dramatic, strongly energy dependent
suppression of the effective Anderson impurity problem. As a consequence, low
energy scales in the lattice case are strongly suppressed compared to the
"Kondo scale" in the single-impurity picture. The IPT results are in
qualitative agreement with recent Quantum Monte Carlo results for the same
problem.Comment: 13 preprint pages including 1 table and 4 eps figures, replaced by
revised version, accepted for publication in Europhysics Letters, added
references and conten
Fermi and non-Fermi liquid behavior in quantum impurity systems: Conserving slave boson theory
The question of Fermi liquid vs. non-Fermi liquid behavior induced by strong
correlations is one of the prominent problems in metallic local moment systems.
As standard models for such systems, the SU(N)xSU(M) Anderson impurity models
exhibit both Fermi liquid and non-Fermi liquid behavior, depending on their
symmetry. Taking the Anderson model as an example, these lectures first give an
introduction to the auxiliary boson method to describe correlated systems
governed by a strong, short-range electronic repulsion. It is then shown how to
include the relevant low-lying excitations (coherent spin flip and charge
fluctuation processes), while preserving the local gauge symmetry of the model.
This amounts to a conserving T-matrix approximation (CTMA). We prove a
cancellation theorem showing that the CTMA incorporates all leading and
subleading infrared singularities at any given order in a self-consistent loop
expansion of the free energy. As a result, the CTMA recovers the correct
infrared behavior of the auxiliary particle propagators, indicating that it
correctly describes both the Fermi and the non-Fermi regimes of the Anderson
model.Comment: 37 pages, LaTeX, style file included, 10 postscript figures; to
appear in Proceedings of the XXXVIII Cracow School of Theoretical Physics,
Zakopane, Poland, June 1-10, 199
A New Heavy-Fermion Superconductor CeIrIn5: Relative of the Cuprates?
CeIrIn5 is a member of a new family of heavy-fermion compounds and has a
Sommerfeld specific heat coefficient of 720 mJ/mol-K2. It exhibits a bulk,
thermodynamic transition to a superconducting state at Tc=0.40 K, below which
the specific heat decreases as T2 to a small residual T-linear value.
Surprisingly, the electrical resistivity drops below instrumental resolution at
a much higher temperature T0=1.2 K. These behaviors are highly reproducible and
field-dependent studies indicate that T0 and Tc arise from the same underlying
electronic structure. The layered crystal structure of CeIrIn5 suggests a
possible analogy to the cuprates in which spin/charge pair correlations develop
well above Tc
Coexistence of magnetism and superconductivity in CeRh1-xIrxIn5
We report a thermodynamic and transport study of the phase diagram of
CeRh1-xIrxIn5. Superconductivity is observed over a broad range of doping, 0.3
< x < 1, including a substantial range of concentration (0.3 < x <0.6) over
which it coexists with magnetic order (which is observed for 0 < x < 0.6). The
anomalous transition to zero resistance that is observed in CeIrIn5 is robust
against Rh substitution. In fact, the observed bulk Tc in CeRh0.5Ir0.5In5 is
more than double that of CeIrIn5, whereas the zero-resistance transition
temperature is relatively unchanged for 0.5 < x < 1
- …
