713 research outputs found

    Nano-droplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer

    No full text
    The authors present the deposition of nanoscale droplets of Cr using femtosecond Ti:Sapphire Laser-Induced Forward Transfer. Deposits around 300 nm in diameter, significantly smaller than any previously reported, are obtained from a 30 nm thick source film. Deposit size, morphology, and adhesion to a receiver substrate as functions of applied laser fluence are investigated. We show that deposits can be obtained from previously irradiated areas of the source material film with negligible loss of deposition quality, allowing sub-spot size period microarrays to be produced without the need to move the source film

    Pulsed laser deposition for growth of high quality epitaxial garnet films for low threshold waveguide lasers

    No full text
    Pulsed laser deposition (PLD) is a mature technique capable of producing extremely high quality epitaxial single crystalline films. We have grown Nd:doped garnet films of GGG (Gd The talk will summarise our progress using conventional (single beam) PLD in thin-film and waveguide growth, using both nanosecond and femtosecond lasers, and also introduce our new directions in tri-beam PLD (three targets, three lasers) for growth of some interesting, complex and perhaps impossible structures, such as Gaussian doping, internal voids and even helically doped structures

    Single-mode tuneable laser operation of hybrid microcavities based on CdSe/CdS core/shell colloidal nanorods on silica microspheres

    No full text
    Colloidal core/shell semiconductor nanonorystals have generated a great deal of interest as gain media in recent years due to a number of salient properties originating from their small size and the associated quantum confinement [1]. These include low-threshold and temperature-insensitive lasing, reduced trapping of excited carriers, and the possibility to alleviate non-radiative Auger recombination by engineering the wavefunction distributions of the electrons, and holes within their volume. Here, single-mode, tuneable operation of fiber-coupled hybrid lasers based on colloidal CdSe/CdS core/shell nanorods on silica microspheres is reported

    Levels, sources and seasonality of coarse particles (PM10-PM2.5) in three European capitals e implications for particulate pollution control

    Get PDF
    Coarse particles of aerodynamic diameter between 2.5 and 10 mm (PMc) are produced by a range of natural (windblown dust and sea sprays) and anthropogenic processes (non-exhaust vehicle emissions, industrial, agriculture, construction and quarrying activities). Although current ambient air quality regulations focus on PM2.5 and PM10, coarse particles are of interest from a public health point of view as they have been associated with certain mortality and morbidity outcomes. In this paper, an analysis of coarse particle levels in three European capitals (London, Madrid and Athens) is presented and discussed. For all three cities we analysed data from both traffic and urban background monitoring sites. The results showed that the levels of coarse particles present significant seasonal, weekly and daily variability. Their wind driven and non-wind driven resuspension as well as their roadside increment due to traffic were estimated. Both the local meteorological conditions and the air mass history indicating long-range atmospheric transport of particles of natural origin are significant parameters that influence the levels of coarse particles in the three cities especially during episodic events

    Infering Air Quality from Traffic Data using Transferable Neural Network Models

    Get PDF
    This work presents a neural network based model for inferring air quality from traffic measurements. It is important to obtain information on air quality in urban environments in order to meet legislative and policy requirements. Measurement equipment tends to be expensive to purchase and maintain. Therefore, a model based approach capable of accurate determination of pollution levels is highly beneficial. The objective of this study was to develop a neural network model to accurately infer pollution levels from existing data sources in Leicester, UK. Neural Networks are models made of several highly interconnected processing elements. These elements process information by their dynamic state response to inputs. Problems which were not solvable by traditional algorithmic approaches frequently can be solved using neural networks. This paper shows that using a simple neural network with traffic and meteorological data as inputs, the air quality can be estimated with a good level of generalisation and in near real-time. By applying these models to links rather than nodes, this methodology can directly be used to inform traffic engineers and direct traffic management decisions towards enhancing local air quality and traffic management simultaneously.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Concomitant CIS on TURBT does not impact oncological outcomes in patients treated with neoadjuvant or induction chemotherapy followed by radical cystectomy

    Get PDF
    © Springer-Verlag GmbH Germany, part of Springer Nature 2018Background: Cisplatin-based neoadjuvant chemotherapy (NAC) for muscle invasive bladder cancer improves all-cause and cancer specific survival. We aimed to evaluate whether the detection of carcinoma in situ (CIS) at the time of initial transurethral resection of bladder tumor (TURBT) has an oncological impact on the response to NAC prior to radical cystectomy. Patients and methods: Patients were identified retrospectively from 19 centers who received at least three cycles of NAC or induction chemotherapy for cT2-T4aN0-3M0 urothelial carcinoma of the bladder followed by radical cystectomy between 2000 and 2013. The primary and secondary outcomes were pathological response and overall survival, respectively. Multivariable analysis was performed to determine the independent predictive value of CIS on these outcomes. Results: Of 1213 patients included in the analysis, 21.8% had concomitant CIS. Baseline clinical and pathologic characteristics of the ‘CIS’ versus ‘no-CIS’ groups were similar. The pathological response did not differ between the two arms when response was defined as pT0N0 (17.9% with CIS vs 21.9% without CIS; p = 0.16) which may indicate that patients with CIS may be less sensitive to NAC or ≤ pT1N0 (42.8% with CIS vs 37.8% without CIS; p = 0.15). On Cox regression model for overall survival for the cN0 cohort, the presence of CIS was not associated with survival (HR 0.86 (95% CI 0.63–1.18; p = 0.35). The presence of LVI (HR 1.41, 95% CI 1.01–1.96; p = 0.04), hydronephrosis (HR 1.63, 95% CI 1.23–2.16; p = 0.001) and use of chemotherapy other than ddMVAC (HR 0.57, 95% CI 0.34–0.94; p = 0.03) were associated with shorter overall survival. For the whole cohort, the presence of CIS was also not associated with survival (HR 1.05 (95% CI 0.82–1.35; p = 0.70). Conclusion: In this multicenter, real-world cohort, CIS status at TURBT did not affect pathologic response to neoadjuvant or induction chemotherapy. This study is limited by its retrospective nature as well as variability in chemotherapy regimens and surveillance regimens.Peer reviewedFinal Accepted Versio
    corecore