1,070 research outputs found
New tools in comparative political economy: The database of political institutions.
[Dataset available: http://hdl.handle.net/10411/15987]
Data Reduction Pipeline for the CHARIS Integral-Field Spectrograph I: Detector Readout Calibration and Data Cube Extraction
We present the data reduction pipeline for CHARIS, a high-contrast
integral-field spectrograph for the Subaru Telescope. The pipeline constructs a
ramp from the raw reads using the measured nonlinear pixel response, and
reconstructs the data cube using one of three extraction algorithms: aperture
photometry, optimal extraction, or fitting. We measure and apply both
a detector flatfield and a lenslet flatfield and reconstruct the wavelength-
and position-dependent lenslet point-spread function (PSF) from images taken
with a tunable laser. We use these measured PSFs to implement a -based
extraction of the data cube, with typical residuals of ~5% due to imperfect
models of the undersampled lenslet PSFs. The full two-dimensional residual of
the extraction allows us to model and remove correlated read noise,
dramatically improving CHARIS' performance. The extraction produces a
data cube that has been deconvolved with the line-spread function, and never
performs any interpolations of either the data or the individual lenslet
spectra. The extracted data cube also includes uncertainties for each spatial
and spectral measurement. CHARIS' software is parallelized, written in Python
and Cython, and freely available on github with a separate documentation page.
Astrometric and spectrophotometric calibrations of the data cubes and PSF
subtraction will be treated in a forthcoming paper.Comment: 18 pages, 15 figures, 3 tables, replaced with JATIS accepted version
(emulateapj formatted here). Software at
https://github.com/PrincetonUniversity/charis-dep and documentation at
http://princetonuniversity.github.io/charis-de
Phase transition curves for mesoscopic superconducting samples
We compute the phase transition curves for mesoscopic superconductors.
Special emphasis is given to the limiting shape of the curve when the magnetic
flux is large. We derive an asymptotic formula for the ground state of the
Schr\"odinger equation in the presence of large applied flux. The expansion is
shown to be sensitive to the smoothness of the domain. The theoretical results
are compared to recent experiments.Comment: 8 pages, 1 figur
Ensemble Sales Forecasting Study in Semiconductor Industry
Sales forecasting plays a prominent role in business planning and business
strategy. The value and importance of advance information is a cornerstone of
planning activity, and a well-set forecast goal can guide sale-force more
efficiently. In this paper CPU sales forecasting of Intel Corporation, a
multinational semiconductor industry, was considered. Past sale, future
booking, exchange rates, Gross domestic product (GDP) forecasting, seasonality
and other indicators were innovatively incorporated into the quantitative
modeling. Benefit from the recent advances in computation power and software
development, millions of models built upon multiple regressions, time series
analysis, random forest and boosting tree were executed in parallel. The models
with smaller validation errors were selected to form the ensemble model. To
better capture the distinct characteristics, forecasting models were
implemented at lead time and lines of business level. The moving windows
validation process automatically selected the models which closely represent
current market condition. The weekly cadence forecasting schema allowed the
model to response effectively to market fluctuation. Generic variable
importance analysis was also developed to increase the model interpretability.
Rather than assuming fixed distribution, this non-parametric permutation
variable importance analysis provided a general framework across methods to
evaluate the variable importance. This variable importance framework can
further extend to classification problem by modifying the mean absolute
percentage error(MAPE) into misclassify error. Please find the demo code at :
https://github.com/qx0731/ensemble_forecast_methodsComment: 14 pages, Industrial Conference on Data Mining 2017 (ICDM 2017
Dilation of the Giant Vortex State in a Mesoscopic Superconducting Loop
We have experimentally investigated the magnetisation of a mesoscopic
aluminum loop at temperatures well below the superconducting transition
temperature . The flux quantisation of the superconducting loop was
investigated with a -Hall magnetometer in magnetic field intensities
between . The magnetic field intensity periodicity observed in
the magnetization measurements is expected to take integer values of the
superconducting flux quanta . A closer inspection of the
periodicity, however, reveal a sub flux quantum shift. This fine structure we
interpret as a consequence of a so called giant vortex state nucleating towards
either the inner or the outer side of the loop. These findings are in agreement
with recent theoretical reports.Comment: 12 pages, 5 figures. Accepted for publication in Phys. Rev.
Flux-Induced Vortex in Mesoscopic Superconducting Loops
We predict the existence of a quantum vortex for an unusual situation. We
study the order parameter in doubly connected superconducting samples embedded
in a uniform magnetic field. For samples with perfect cylindrical symmetry, the
order parameter has been known for long and no vortices are present in the
linear regime. However, if the sample is not symmetric, there exist ranges of
the field for which the order parameter vanishes along a line, parallel to the
field. In many respects, the behavior of this line is qualitatively different
from that of the vortices encountered in type II superconductivity. For samples
with mirror symmetry, this flux-induced vortex appears at the thin side for
small fluxes and at the opposite side for large fluxes. We propose direct and
indirect experimental methods which could test our predictions.Comment: 6 pages, Latex, 4 figs., uses RevTex, extended to situations far from
cylindrical symmetr
The what and where of adding channel noise to the Hodgkin-Huxley equations
One of the most celebrated successes in computational biology is the
Hodgkin-Huxley framework for modeling electrically active cells. This
framework, expressed through a set of differential equations, synthesizes the
impact of ionic currents on a cell's voltage -- and the highly nonlinear impact
of that voltage back on the currents themselves -- into the rapid push and pull
of the action potential. Latter studies confirmed that these cellular dynamics
are orchestrated by individual ion channels, whose conformational changes
regulate the conductance of each ionic current. Thus, kinetic equations
familiar from physical chemistry are the natural setting for describing
conductances; for small-to-moderate numbers of channels, these will predict
fluctuations in conductances and stochasticity in the resulting action
potentials. At first glance, the kinetic equations provide a far more complex
(and higher-dimensional) description than the original Hodgkin-Huxley
equations. This has prompted more than a decade of efforts to capture channel
fluctuations with noise terms added to the Hodgkin-Huxley equations. Many of
these approaches, while intuitively appealing, produce quantitative errors when
compared to kinetic equations; others, as only very recently demonstrated, are
both accurate and relatively simple. We review what works, what doesn't, and
why, seeking to build a bridge to well-established results for the
deterministic Hodgkin-Huxley equations. As such, we hope that this review will
speed emerging studies of how channel noise modulates electrophysiological
dynamics and function. We supply user-friendly Matlab simulation code of these
stochastic versions of the Hodgkin-Huxley equations on the ModelDB website
(accession number 138950) and
http://www.amath.washington.edu/~etsb/tutorials.html.Comment: 14 pages, 3 figures, review articl
A dual point description of mesoscopic superconductors
We present an analysis of the magnetic response of a mesoscopic
superconductor, i.e. a system of sizes comparable to the coherence length and
to the London penetration depth. Our approach is based on special properties of
the two dimensional Ginzburg-Landau equations, satisfied at the dual point
Closed expressions for the free energy and the
magnetization of the superconductor are derived. A perturbative analysis in the
vicinity of the dual point allows us to take into account vortex interactions,
using a new scaling result for the free energy. In order to characterize the
vortex/current interactions, we study vortex configurations that are out of
thermodynamical equilibrium. Our predictions agree with the results of recent
experiments performed on mesoscopic aluminium disks.Comment: revtex, 20 pages, 9 figure
- …
