23 research outputs found
New fluorescent auxin probes visualise tissue‐specific and subcellular distributions of auxin in Arabidopsis
In a world that will rely increasingly on efficient plant growth for sufficient food, it is important to learn about natural mechanisms of phytohormone action. In this work, the introduction of a fluorophore to an auxin molecule represents a sensitive and non‐invasive method to directly visualise auxin localisation with high spatiotemporal resolution.
The state‐of‐the‐art multidisciplinary approaches of genetic and chemical biology analysis together with live cell imaging, liquid chromatography–mass spectrometry (LC‐MS) and surface plasmon resonance (SPR) methods were employed for the characterisation of auxin‐related biological activity, distribution and stability of the presented compounds in Arabidopsis thaliana.
Despite partial metabolisation in vivo, these fluorescent auxins display an uneven and dynamic distribution leading to the formation of fluorescence maxima in tissues known to concentrate natural auxin, such as the concave side of the apical hook. Importantly, their distribution is altered in response to different exogenous stimuli in both roots and shoots. Moreover, we characterised the subcellular localisation of the fluorescent auxin analogues as being present in the endoplasmic reticulum and endosomes.
Our work provides powerful tools to visualise auxin distribution within different plant tissues at cellular or subcellular levels and in response to internal and environmental stimuli during plant development
Antigravitropic PIN polarization maintains non-vertical growth in lateral roots
Lateral roots are typically maintained at non-vertical angles with respect to gravity. These gravitropic setpoint angles are intriguing because their maintenance requires that roots are able to effect growth response both with and against the gravity vector, a phenomenon previously attributed to gravitropism acting against an antigravitropic offset mechanism. Here we show how the components mediating gravitropism in the vertical primary root—PINs and phosphatases acting upon them—are reconfigured in their regulation such that lateral root growth at a range of angles can be maintained. We show that the ability of Arabidopsis lateral roots to bend both downward and upward requires the generation of auxin asymmetries and is driven by angle-dependent variation in downward gravitropic auxin flux acting against angle-independent upward, antigravitropic flux. Further, we demonstrate a symmetry in auxin distribution in lateral roots at gravitropic setpoint angle that can be traced back to a net, balanced polarization of PIN3 and PIN7 auxin transporters in the columella. These auxin fluxes are shifted by altering PIN protein phosphoregulation in the columella, either by introducing PIN3 phosphovariant versions or via manipulation of levels of the phosphatase subunit PP2A/RCN1. Finally, we show that auxin, in addition to driving lateral root directional growth, acts within the lateral root columella to induce more vertical growth by increasing RCN1 levels, causing a downward shift in PIN3 localization, thereby diminishing the magnitude of the upward, antigravitropic auxin flux
Isolation of a new restriction enzyme,ApaCI, an isoschizomer ofBamHI produced byAcetobacter pasteurianus
SAC phosphoinositide phosphatases at the tonoplast mediate vacuolar function in Arabidopsis
Embryo-lethal phenotypes in early abp1 mutants are due to disruption of the neighboring BSM gene
The Auxin Binding Protein1 (ABP1) has been identified based on its ability to bind auxin with high affinity and studied for a long time as a prime candidate for the extracellular auxin receptor responsible for mediating in particular the fast non-transcriptional auxin responses. However, the contradiction between the embryo-lethal phenotypes of the originally described Arabidopsis T-DNA insertional knock-out alleles (abp1-1 and abp1-1s) and the wild type-like phenotypes of other recently described loss-of-function alleles (abp1-c1 and abp1-TD1) questions the biological importance of ABP1 and relevance of the previous genetic studies. Here we show that there is no hidden copy of the ABP1 gene in the Arabidopsis genome but the embryo-lethal phenotypes of abp1-1 and abp1-1s alleles are very similar to the knock-out phenotypes of the neighboring gene, BELAYA SMERT (BSM). Furthermore, the allelic complementation test between bsm and abp1 alleles shows that the embryo-lethality in the abp1-1 and abp1-1s alleles is caused by the off-target disruption of the BSM locus by the T-DNA insertions. This clarifies the controversy of different phenotypes among published abp1 knock-out alleles and asks for reflections on the developmental role of ABP1
Embryonic lethality of Arabidopsis abp1-1 is caused by deletion of the adjacent BSM gene
Decades of research have suggested that AUXIN BINDING PROTEIN 1 (ABP1) is an essential membrane-associated auxin receptor, but recent findings directly contradict this view. Here we show that embryonic lethality observed in abp1-1, which has been a cornerstone of ABP1 studies, is caused by the deletion of the neighbouring BELAYA SMERT (BSM) gene, not by disruption of ABP1. On the basis of our results, we conclude that ABP1 is not essential for Arabidopsis development
