56,195 research outputs found

    Intrinsic Variability and Field Statistics for the Vela Pulsar: 3. Two-Component Fits and Detailed Assessment of Stochastic Growth Theory

    Full text link
    The variability of the Vela pulsar (PSR B0833-45) corresponds to well-defined field statistics that vary with pulsar phase, ranging from Gaussian intensity statistics off-pulse to approximately power-law statistics in a transition region and then lognormal statistics on-pulse, excluding giant micropulses. These data are analyzed here in terms of two superposed wave populations, using a new calculation for the amplitude statistics of two vectorially-combined transverse fields. Detailed analyses show that the approximately power-law and lognormal distributions observed are fitted well at essentially all on-pulse phases by Gaussian-lognormal and double-lognormal combinations, respectively. These good fits, plus the smooth but significant variations in fit parameters across the source, provide strong evidence that the approximately power-law statistics observed in the transition region are not intrinsic. Instead, the data are consistent with normal pulsar emission having lognormal statistics at all phases. This is consistent with generation in an inhomogeneous source obeying stochastic growth theory (SGT) and with the emission mechanism being purely linear (either direct or indirect). A nonlinear mechanism is viable only if it produces lognormal statistics when suitably ensemble-averaged. Variations in the SGT fit parameters with phase imply that the radiation is relatively more variable near the pulse edges than near the center, as found in earlier work. In contrast, Vela's giant micropulses come from a very restricted phase range and have power-law statistics with indices (6.7±0.66.7 \pm 0.6) not inconsistent with nonlinear wave collapse. These results imply that normal pulses have a different source and generation mechanism than giant micropulses, as suggested previously on other grounds.Comment: 10 pages and 14 figures. Accepted by Monthly Notices of the Royal Astronomical Society in April 200

    Epitaxial solar-cell fabrication, phase 2

    Get PDF
    Dichlorosilane (SiH2Cl2) was used as the silicon source material in all of the epitaxial growths. Both n/p/p(+) and p/n/n(+) structures were studied. Correlations were made between the measured profiles and the solar cell parameters, especially cell open-circuit voltage. It was found that in order to obtain consistently high open-circuit voltage, the epitaxial techniques used to grow the surface layer must be altered to obtain very abrupt doping profiles in the vicinity of the junction. With these techniques, it was possible to grow reproducibly both p/n/n(+) and n/p/p(+) solar cell structures having open-circuit voltages in the 610- to 630-mV range, with fill-factors in excess of 0.80 and AM-1 efficiencies of about 13%. Combinations and comparisons of epitaxial and diffused surface layers were also made. Using such surface layers, we found that the blue response of epitaxial cells could be improved, resulting in AM-1 short-circuit current densities of about 30 mA/cm sq. The best cells fabricated in this manner had AM-1 efficiency of 14.1%

    Epitaxial silicon growth for solar cells

    Get PDF
    Growth and fabrication procedures for the baseline solar cells are described along with measured cell parameters, and the results. Reproducibility of these results was established and the direction to be taken for higher efficiency is identified

    Variations in access, uptake and equity: radiology services

    Get PDF

    Galileo internal electrostatic discharge program

    Get PDF
    The Galileo spacecraft which will orbit Jupiter in 1988 will encounter a very harsh environment of energetic electrons. These electrons will have sufficient energy to penetrate the spacecraft shielding, consequently depositing charges in the dielectric insulating materials or ungrounded conductors. The resulting electric field could exceed the breakdown strength of the insulating materials, producing discharges. The transients produced from these Internal Electrostatic Discharges (IESD) could, depending on their relative location, be coupled to nearby cables and circuits. These transients could change the state of logic circuits or degrade or even damage spacecraft components, consequently disrupting the operation of subsystems and systems of the Galileo spacecraft during its expected mission life. An extensive testing program was initiated for the purpose of understanding the potential threats associated with these IESD events. Data obtained from these tests were used to define design guidelines

    An Appraisal of FOPIM Fast-converging Perturbation Method

    Get PDF
    Appraisal of first order perturbation iteration fast converging metho

    Intrinsic Variability and Field Statistics for the Vela Pulsar: 2. Systematics and Single-Component Fits

    Full text link
    Individual pulses from pulsars have intensity-phase profiles that differ widely from pulse to pulse, from the average profile, and from phase to phase within a pulse. Widely accepted explanations do not exist for this variability or for the mechanism producing the radiation. The variability corresponds to the field statistics, particularly the distribution of wave field amplitudes, which are predicted by theories for wave growth in inhomogeneous media. This paper shows that the field statistics of the Vela pulsar (PSR B0833-45) are well-defined and vary as a function of pulse phase, evolving from Gaussian intensity statistics off-pulse to approximately power-law and then lognormal distributions near the pulse peak to approximately power-law and eventually Gaussian statistics off-pulse again. Detailed single-component fits confirm that the variability corresponds to lognormal statistics near the peak of the pulse profile and Gaussian intensity statistics off-pulse. The lognormal field statistics observed are consistent with the prediction of stochastic growth theory (SGT) for a purely linear system close to marginal stability. The simplest interpretations are that the pulsar's variability is a direct manifestation of an SGT state and the emission mechanism is linear (either direct or indirect), with no evidence for nonlinear mechanisms like modulational instability and wave collapse which produce power-law field statistics. Stringent constraints are placed on nonlinear mechanisms: they must produce lognormal statistics when suitably ensemble-averaged. Field statistics are thus a powerful, potentially widely applicable tool for understanding variability and constraining mechanisms and source characteristics of coherent astrophysical and space emissions.Comment: 11 pages, 12 figures. Accepted by Monthly Notices of the Royal Astronmical Society in April 200

    A dynamical approximation for stochastic partial differential equations

    Get PDF
    Random invariant manifolds often provide geometric structures for understanding stochastic dynamics. In this paper, a dynamical approximation estimate is derived for a class of stochastic partial differential equations, by showing that the random invariant manifold is almost surely asymptotically complete. The asymptotic dynamical behavior is thus described by a stochastic ordinary differential system on the random invariant manifold, under suitable conditions. As an application, stationary states (invariant measures) is considered for one example of stochastic partial differential equations.Comment: 28 pages, no figure
    corecore