2,925 research outputs found
Finite-difference distributions for the Ginibre ensemble
The Ginibre ensemble of complex random matrices is studied. The complex
valued random variable of second difference of complex energy levels is
defined. For the N=3 dimensional ensemble are calculated distributions of
second difference, of real and imaginary parts of second difference, as well as
of its radius and of its argument (angle). For the generic N-dimensional
Ginibre ensemble an exact analytical formula for second difference's
distribution is derived. The comparison with real valued random variable of
second difference of adjacent real valued energy levels for Gaussian
orthogonal, unitary, and symplectic, ensemble of random matrices as well as for
Poisson ensemble is provided.Comment: 8 pages, a number of small changes in the tex
Matrix Element Distribution as a Signature of Entanglement Generation
We explore connections between an operator's matrix element distribution and
its entanglement generation. Operators with matrix element distributions
similar to those of random matrices generate states of high multi-partite
entanglement. This occurs even when other statistical properties of the
operators do not conincide with random matrices. Similarly, operators with some
statistical properties of random matrices may not exhibit random matrix element
distributions and will not produce states with high levels of multi-partite
entanglement. Finally, we show that operators with similar matrix element
distributions generate similar amounts of entanglement.Comment: 7 pages, 6 figures, to be published PRA, partially supersedes
quant-ph/0405053, expands quant-ph/050211
Overdamping by weakly coupled environments
A quantum system weakly interacting with a fast environment usually undergoes
a relaxation with complex frequencies whose imaginary parts are damping rates
quadratic in the coupling to the environment, in accord with Fermi's ``Golden
Rule''. We show for various models (spin damped by harmonic-oscillator or
random-matrix baths, quantum diffusion, quantum Brownian motion) that upon
increasing the coupling up to a critical value still small enough to allow for
weak-coupling Markovian master equations, a new relaxation regime can occur. In
that regime, complex frequencies lose their real parts such that the process
becomes overdamped. Our results call into question the standard belief that
overdamping is exclusively a strong coupling feature.Comment: 4 figures; Paper submitted to Phys. Rev.
Correlated projection operator approach to non-Markovian dynamics in spin baths
The dynamics of an open quantum system is usually studied by performing a
weak-coupling and weak-correlation expansion in the system-bath interaction.
For systems exhibiting strong couplings and highly non-Markovian behavior this
approach is not justified. We apply a recently proposed correlated projection
superoperator technique to the model of a central spin coupled to a spin bath
via full Heisenberg interaction. Analytical solutions to both the
Nakajima-Zwanzig and the time-convolutionless master equation are determined
and compared with the results of the exact solution. The correlated projection
operator technique significantly improves the standard methods and can be
applied to many physical problems such as the hyperfine interaction in a
quantum dot
On determination of statistical properties of spectra from parametric level dynamics
We analyze an approach aiming at determining statistical properties of
spectra of time-periodic quantum chaotic system based on the parameter dynamics
of their quasienergies. In particular we show that application of the methods
of statistical physics, proposed previously in the literature, taking into
account appropriate integrals of motion of the parametric dynamics is fully
justified, even if the used integrals of motion do not determine the invariant
manifold in a unique way. The indetermination of the manifold is removed by
applying Dirac's theory of constrained Hamiltonian systems and imposing
appropriate primary, first-class constraints and a gauge transformation
generated by them in the standard way. The obtained results close the gap in
the whole reasoning aiming at understanding statistical properties of spectra
in terms of parametric dynamics.Comment: 9 pages without figure
Non-Markovian generalization of the Lindblad theory of open quantum systems
A systematic approach to the non-Markovian quantum dynamics of open systems
is given by the projection operator techniques of nonequilibrium statistical
mechanics. Combining these methods with concepts from quantum information
theory and from the theory of positive maps, we derive a class of correlated
projection superoperators that take into account in an efficient way
statistical correlations between the open system and its environment. The
result is used to develop a generalization of the Lindblad theory to the regime
of highly non-Markovian quantum processes in structured environments.Comment: 10 pages, 1 figure, replaced by published versio
Universality of Decoherence
We consider environment induced decoherence of quantum superpositions to
mixtures in the limit in which that process is much faster than any competing
one generated by the Hamiltonian of the isolated system. While
the golden rule then does not apply we can discard . By allowing
for simultaneous couplings to different reservoirs, we reveal decoherence as a
universal short-time phenomenon independent of the character of the system as
well as the bath and of the basis the superimposed states are taken from. We
discuss consequences for the classical behavior of the macroworld and quantum
measurement: For the decoherence of superpositions of macroscopically distinct
states the system Hamiltonian is always negligible.Comment: 4 revtex pages, no figure
Coarse-Grained Picture for Controlling Complex Quantum Systems
We propose a coarse-grained picture to control ``complex'' quantum dynamics,
i.e., multi-level-multi-level transition with a random interaction. Assuming
that optimally controlled dynamics can be described as a Rabi-like oscillation
between an initial and final state, we derive an analytic optimal field as a
solution to optimal control theory. For random matrix systems, we numerically
confirm that the analytic optimal field steers an initial state to a target
state which both contains many eigenstates.Comment: jpsj2.cls, 2 pages, 3 figure files; appear in J. Phys. Soc. Jpn.
Vol.73, No.11 (Nov. 15, 2004
Chaotic Quantum Decay in Driven Biased Optical Lattices
Quantum decay in an ac driven biased periodic potential modeling cold atoms
in optical lattices is studied for a symmetry broken driving. For the case of
fully chaotic classical dynamics the classical exponential decay is quantum
mechanically suppressed for a driving frequency \omega in resonance with the
Bloch frequency \omega_B, q\omega=r\omega_B with integers q and r.
Asymptotically an algebraic decay ~t^{-\gamma} is observed. For r=1 the
exponent \gamma agrees with as predicted by non-Hermitian random matrix
theory for q decay channels. The time dependence of the survival probability
can be well described by random matrix theory. The frequency dependence of the
survival probability shows pronounced resonance peaks with sub-Fourier
character.Comment: 7 pages, 5 figure
- …
