469 research outputs found
Amorphization induced by pressure: results for zeolites and general implications
We report an {\sl ab initio} study of pressure-induced amorphization (PIA) in
zeolites, which are model systems for this phenomenon. We confirm the
occurrence of low-density amorphous phases like the one reported by Greaves
{\sl et al.} [Science {\bf 308}, 1299 (2005)], which preserves the crystalline
topology and might constitute a new type of glass. The role of the zeolite
composition regarding PIA is explained. Our results support the correctness of
existing models for the basic PIA mechanim, but suggest that energetic, rather
than kinetic, factors determine the irreversibility of the transition.Comment: 4 pages with 3 figures embedded. More information at
http://www.icmab.es/dmmis/leem/jorg
Low temperature structural phase transition and incommensurate lattice modulation in the spin gap compound BaCuSi2O6
Results of high resolution x-ray diffraction experiments are presented for
single crystals of the spin gap compound BaCuSiO in the temperature
range from 16 to 300 K. The data show clear evidence of a transition from the
room temperature tetragonal phase into an incommensurately modulated
orthorhombic structure below 100 K. This lattice modulation is
characterized by a resolution limited wave vector {\bf
q}=(0,0.13,0) and its 2 and 3 harmonics. The phase
transition is first order and exhibits considerable hysteresis. This
observation implies that the spin Hamiltonian representing the system is more
complex than originally thought.Comment: 4 pages, 4 figure
Roughening of close-packed singular surfaces
An upper bound to the roughening temperature of a close-packed singular
surface, fcc Al (111), is obtained via free energy calculations based on
thermodynamic integration using the embedded-atom interaction model. Roughening
of Al (111) is predicted to occur at around 890 K, well below bulk melting (933
K), and it should therefore be observable, save for possible kinetic hindering.Comment: RevTeX 4 pages, embedded figure
First-principles study of the ferroelastic phase transition in CaCl_2
First-principles density-functional calculations within the local-density
approximation and the pseudopotential approach are used to study and
characterize the ferroelastic phase transition in calcium chloride (CaCl_2). In
accord with experiment, the energy map of CaCl_2 has the typical features of a
pseudoproper ferroelastic with an optical instability as ultimate origin of the
phase transition. This unstable optic mode is close to a pure rigid unit mode
of the framework of chlorine atoms and has a negative Gruneisen parameter. The
ab-initio ground state agrees fairly well with the experimental low temperature
structure extrapolated at 0K. The calculated energy map around the ground state
is interpreted as an extrapolated Landau free-energy and is successfully used
to explain some of the observed thermal properties. Higher-order anharmonic
couplings between the strain and the unstable optic mode, proposed in previous
literature as important terms to explain the soft-phonon temperature behavior,
are shown to be irrelevant for this purpose. The LAPW method is shown to
reproduce the plane-wave results in CaCl_2 within the precision of the
calculations, and is used to analyze the relative stability of different phases
in CaCl_2 and the chemically similar compound SrCl_2.Comment: 9 pages, 6 figures, uses RevTeX
Universal health coverage from multiple perspectives: a synthesis of conceptual literature and global debates
Background: There is an emerging global consensus on the importance of universal health coverage (UHC), but no unanimity on the conceptual definition and scope of UHC, whether UHC is achievable or not, how to move towards it, common indicators for measuring its progress, and its long-term sustainability. This has resulted in various interpretations of the concept, emanating from different disciplinary perspectives. This paper discusses the various dimensions of UHC emerging from these interpretations and argues for the need to pay attention to the complex interactions across the various components of a health system in the pursuit of UHC as a legal human rights issue. Discussion: The literature presents UHC as a multi-dimensional concept, operationalized in terms of universal population coverage, universal financial protection, and universal access to quality health care, anchored on the basis of health care as an international legal obligation grounded in international human rights laws. As a legal concept, UHC implies the existence of a legal framework that mandates national governments to provide health care to all residents while compelling the international community to support poor nations in implementing this right. As a humanitarian social concept, UHC aims at achieving universal population coverage by enrolling all residents into health-related social security systems and securing equitable entitlements to the benefits from the health system for all. As a health economics concept, UHC guarantees financial protection by providing a shield against the catastrophic and impoverishing consequences of out-of-pocket expenditure, through the implementation of pooled prepaid financing systems. As a public health concept, UHC has attracted several controversies regarding which services should be covered: comprehensive services vs. minimum basic package, and priority disease-specific interventions vs. primary health care. Summary: As a multi-dimensional concept, grounded in international human rights laws, the move towards UHC in LMICs requires all states to effectively recognize the right to health in their national constitutions. It also requires a human rights-focused integrated approach to health service delivery that recognizes the health system as a complex phenomenon with interlinked functional units whose effective interaction are essential to reach the equilibrium called UHC
- …
