925 research outputs found
Comparison of Fuzzy Logic and Genetic Algorithm Based Admission Control Strategies for UMTS System
CDMA systems have so-called soft capacity, so the total number of possible sessions has not an exact value. The capacity of CDMA system depends on the interference level in the system. There are therefore RRM (Radio Resources Management) functions, which are responsible for supplying optimum coverage, ensuring efficient use of physical resources and providing the maximum planned capacity. This paper presents and compares several algorithms that are used for admission control purposes in UMTS system. Several versions of fuzzy logic based algorithms, load factor based algorithm and genetic based algorithm are mutually compared via simulations
Enhanced Receivers for Interference Cancellation in 3G Systems
Interference cancellation and multiuser detection in CDMA systems are still actual research topics. These techniques enable us to deal with interference and to increase system capacity. In this paper, a so-called Generalized RAKE receiver, an Uplink generalized multiuser detection and a Blind adaptive multiuser detection are described. These algorithms are compared with conventional receivers and their properties are verified via simulations. The results imply that some of these algorithms are able to overcome the performance of the conventional receivers
Near-infrared observations of active asteroid (3200) Phaethon reveal no evidence for hydration
Asteroid (3200) Phaethon is an active near-Earth asteroid and the parent body
of the Geminid Meteor Shower. Because of its small perihelion distance,
Phaethon's surface reaches temperatures sufficient to destabilize hydrated
materials. We conducted rotationally resolved spectroscopic observations of
this asteroid, mostly covering the northern hemisphere and the equatorial
region, beyond 2.5-micron to search for evidence of hydration on its surface.
Here we show that the observed part of Phaethon does not exhibit the 3-micron
hydrated mineral absorption (within 2-sigma). These observations suggest that
Phaethon's modern activity is not due to volatile sublimation or
devolatilization of phyllosilicates on its surface. It is possible that the
observed part of Phaethon was originally hydrated and has since lost volatiles
from its surface via dehydration, supporting its connection to the Pallas
family, or it was formed from anhydrous material
Near-Earth asteroid (3200) Phaethon. Characterization of its orbit, spin state, and thermophysical parameters
The near-Earth asteroid (3200) Phaethon is an intriguing object: its
perihelion is at only 0.14 au and is associated with the Geminid meteor stream.
We aim to use all available disk-integrated optical data to derive a reliable
convex shape model of Phaethon. By interpreting the available space- and
ground-based thermal infrared data and Spitzer spectra using a thermophysical
model, we also aim to further constrain its size, thermal inertia, and visible
geometric albedo. We applied the convex inversion method to the new optical
data obtained by six instruments and to previous observations. The convex shape
model was then used as input for the thermophysical modeling. We also studied
the long-term stability of Phaethon's orbit and spin axis with a numerical
orbital and rotation-state integrator. We present a new convex shape model and
rotational state of Phaethon: a sidereal rotation period of 3.603958(2) h and
ecliptic coordinates of the preferred pole orientation of (319,
39) with a 5 uncertainty. Moreover, we derive its size
(=5.10.2 km), thermal inertia (=600200 J m
s K), geometric visible albedo
(=0.1220.008), and estimate the macroscopic surface
roughness. We also find that the Sun illumination at the perihelion passage
during the past several thousand years is not connected to a specific area on
the surface, which implies non-preferential heating.Comment: Astronomy and Astrophysics. In pres
A 380 GHz SIS receiver using Nb/AlO(x)/Nb junctions for a radioastronomical balloon-borne experiment: PRONAOS
The superheterodyne detection technique used for the spectrometer instrument of the PRONAOS project will provide a very high spectral resolution (delta nu/nu = 10(exp -6)). The most critical components are those located at the front-end of the receiver: their contribution dominates the total noise of the receiver. Therefore, it is important to perform accurate studies for specific components, such as mixers and multipliers working in the submillimeter wave range. Difficulties in generating enough local oscillator (LO) power at high frequencies make SIS mixers very desirable for operation above 300 GHz. The low LO power requirements and the low noise temperature of these mixers are the primary reason for building an SIS receiver. This paper reports the successful fabrication of small (less than or equal to 1 sq micron) Nb/Al-O(x)/Nb junctions and arrays with excellent I-V characteristics and very good reliability, resulting in a low noise receiver performance measured in the 368/380 GHz frequency range
Combining Static and Dynamic Contract Checking for Curry
Static type systems are usually not sufficient to express all requirements on
function calls. Hence, contracts with pre- and postconditions can be used to
express more complex constraints on operations. Contracts can be checked at run
time to ensure that operations are only invoked with reasonable arguments and
return intended results. Although such dynamic contract checking provides more
reliable program execution, it requires execution time and could lead to
program crashes that might be detected with more advanced methods at compile
time. To improve this situation for declarative languages, we present an
approach to combine static and dynamic contract checking for the functional
logic language Curry. Based on a formal model of contract checking for
functional logic programming, we propose an automatic method to verify
contracts at compile time. If a contract is successfully verified, dynamic
checking of it can be omitted. This method decreases execution time without
degrading reliable program execution. In the best case, when all contracts are
statically verified, it provides trust in the software since crashes due to
contract violations cannot occur during program execution.Comment: Pre-proceedings paper presented at the 27th International Symposium
on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur,
Belgium, 10-12 October 2017 (arXiv:1708.07854
From Boolean Equalities to Constraints
Although functional as well as logic languages use equality to discriminate between logically different cases, the operational meaning of equality is different in such languages. Functional languages reduce equational expressions to their Boolean values, True or False, logic languages use unification to check the validity only and fail otherwise. Consequently, the language Curry, which amalgamates functional and logic programming features, offers two kinds of equational expressions so that the programmer has to distinguish between these uses. We show that this distinction can be avoided by providing an analysis and transformation method that automatically selects the appropriate operation. Without this distinction in source programs, the language design can be simplified and the execution of programs can be optimized. As a consequence, we show that one kind of equational expressions is sufficient and unification is nothing else than an optimization of Boolean equality
YORP and Yarkovsky effects in asteroids (1685) Toro, (2100) Ra-Shalom, (3103) Eger, and (161989) Cacus
The rotation states of small asteroids are affected by a net torque arising
from an anisotropic sunlight reflection and thermal radiation from the
asteroids' surfaces. On long timescales, this so-called YORP effect can change
asteroid spin directions and their rotation periods. We analyzed lightcurves of
four selected near-Earth asteroids with the aim of detecting secular changes in
their rotation rates that are caused by YORP. We use the lightcurve inversion
method to model the observed lightcurves and include the change in the rotation
rate as a free parameter of optimization. We
collected more than 70 new lightcurves. For asteroids Toro and Cacus, we used
thermal infrared data from the WISE spacecraft and estimated their size and
thermal inertia. We also used the currently available optical and radar
astrometry of Toro, Ra-Shalom, and Cacus to infer the Yarkovsky effect. We
detected a YORP acceleration of for asteroid Cacus. For
Toro, we have a tentative () detection of YORP from a significant
improvement of the lightcurve fit for a nonzero value of . For asteroid
Eger, we confirmed the previously published YORP detection with more data and
updated the YORP value to . We also updated the shape model of
asteroid Ra-Shalom and put an upper limit for the change of the rotation rate
to . Ra-Shalom has a greater than
Yarkovsky detection with a theoretical value consistent with observations
assuming its size and/or density is slightly larger than the nominally expected
values
(16) Psyche: A mesosiderite-like asteroid?
Asteroid (16) Psyche is the target of the NASA Psyche mission. It is
considered one of the few main-belt bodies that could be an exposed
proto-planetary metallic core and that would thus be related to iron
meteorites. Such an association is however challenged by both its near- and
mid-infrared spectral properties and the reported estimates of its density.
Here, we aim to refine the density of (16) Psyche to set further constraints on
its bulk composition and determine its potential meteoritic analog.
We observed (16) Psyche with ESO VLT/SPHERE/ZIMPOL as part of our large
program (ID 199.C-0074). We used the high angular resolution of these
observations to refine Psyche's three-dimensional (3D) shape model and
subsequently its density when combined with the most recent mass estimates. In
addition, we searched for potential companions around the asteroid. We derived
a bulk density of 3.99\,\,0.26\,gcm for Psyche. While such
density is incompatible at the 3-sigma level with any iron meteorites
(7.8\,gcm), it appears fully consistent with that of
stony-iron meteorites such as mesosiderites (density
4.25\,cm). In addition, we found no satellite in our images
and set an upper limit on the diameter of any non-detected satellite of
1460\,\,200}\,m at 150\,km from Psyche (0.2\%\,\,R, the
Hill radius) and 800\,\,200\,m at 2,000\,km (3\%\,\,).
Considering that the visible and near-infrared spectral properties of
mesosiderites are similar to those of Psyche, there is merit to a
long-published initial hypothesis that Psyche could be a plausible candidate
parent body for mesosiderites.Comment: 16 page
Observing the variation of asteroid thermal inertia with heliocentric distance
Thermal inertia is a useful property to characterise a planetary surface since it can be used as a qualitative measure of the regolith grain size. It is expected to vary with heliocentric distance because of its dependence on temperature. However, no previous investigation has conclusively observed a change in thermal inertia for any given planetary body. We have addressed this by using NEOWISE data and the Advanced Thermophysical Model to study the thermophysical properties of the near-Earth asteroids (1036) Ganymed, (1580) Betulia, and (276049) 2002 CE26 as they moved around their highly eccentric orbits. We confirm that the thermal inertia values of Ganymed and 2002 CE26 do vary with heliocentric distance, although the degree of variation observed depends on the spectral emissivity assumed in the thermophysical modelling. We also confirm that the thermal inertia of Betulia did not change for three different observations obtained at the same heliocentric distance. Depending on the spectral emissivity, the variations for Ganymed and 2002 CE26 are potentially more extreme than that implied by theoretical models of heat transfer within asteroidal regoliths, which might be explained by asteroids having thermal properties that also vary with depth. Accounting for this variation reduces a previously observed trend of decreasing asteroid thermal inertia with increasing size, and suggests that the surfaces of small and large asteroids could be much more similar than previously thought. Furthermore, this variation can affect Yarkovsky orbital drift predictions by a few tens of per cent
- …
