3,789 research outputs found
Tensor models and embedded Riemann surfaces
Tensor models and, more generally, group field theories are candidates for
higher-dimensional quantum gravity, just as matrix models are in the 2d
setting. With the recent advent of a 1/N-expansion for coloured tensor models,
more focus has been given to the study of the topological aspects of their
Feynman graphs. Crucial to the aforementioned analysis were certain subgraphs
known as bubbles and jackets. We demonstrate in the 3d case that these graphs
are generated by matrix models embedded inside the tensor theory. Moreover, we
show that the jacket graphs represent (Heegaard) splitting surfaces for the
triangulation dual to the Feynman graph. With this in hand, we are able to
re-express the Boulatov model as a quantum field theory on these Riemann
surfaces.Comment: 9 pages, 7 fi
Homological Product Codes
Quantum codes with low-weight stabilizers known as LDPC codes have been
actively studied recently due to their simple syndrome readout circuits and
potential applications in fault-tolerant quantum computing. However, all
families of quantum LDPC codes known to this date suffer from a poor distance
scaling limited by the square-root of the code length. This is in a sharp
contrast with the classical case where good families of LDPC codes are known
that combine constant encoding rate and linear distance. Here we propose the
first family of good quantum codes with low-weight stabilizers. The new codes
have a constant encoding rate, linear distance, and stabilizers acting on at
most qubits, where is the code length. For comparison, all
previously known families of good quantum codes have stabilizers of linear
weight. Our proof combines two techniques: randomized constructions of good
quantum codes and the homological product operation from algebraic topology. We
conjecture that similar methods can produce good stabilizer codes with
stabilizer weight for any . Finally, we apply the homological
product to construct new small codes with low-weight stabilizers.Comment: 49 page
Quantum statistics on graphs
Quantum graphs are commonly used as models of complex quantum systems, for
example molecules, networks of wires, and states of condensed matter. We
consider quantum statistics for indistinguishable spinless particles on a
graph, concentrating on the simplest case of abelian statistics for two
particles. In spite of the fact that graphs are locally one-dimensional, anyon
statistics emerge in a generalized form. A given graph may support a family of
independent anyon phases associated with topologically inequivalent exchange
processes. In addition, for sufficiently complex graphs, there appear new
discrete-valued phases. Our analysis is simplified by considering combinatorial
rather than metric graphs -- equivalently, a many-particle tight-binding model.
The results demonstrate that graphs provide an arena in which to study new
manifestations of quantum statistics. Possible applications include topological
quantum computing, topological insulators, the fractional quantum Hall effect,
superconductivity and molecular physics.Comment: 21 pages, 6 figure
Characterizing ~submanifolds by -integrability of global curvatures
We give sufficient and necessary geometric conditions, guaranteeing that an
immersed compact closed manifold of class and of
arbitrary dimension and codimension (or, more generally, an Ahlfors-regular
compact set satisfying a mild general condition relating the size of
holes in to the flatness of measured in terms of beta
numbers) is in fact an embedded manifold of class ,
where and . The results are based on a careful analysis of
Morrey estimates for integral curvature--like energies, with integrands
expressed geometrically, in terms of functions that are designed to measure
either (a) the shape of simplices with vertices on or (b) the size of
spheres tangent to at one point and passing through another point of
.
Appropriately defined \emph{maximal functions} of such integrands turn out to
be of class for if and only if the local graph
representations of have second order derivatives in and
is embedded. There are two ingredients behind this result. One of them is an
equivalent definition of Sobolev spaces, widely used nowadays in analysis on
metric spaces. The second one is a careful analysis of local Reifenberg
flatness (and of the decay of functions measuring that flatness) for sets with
finite curvature energies. In addition, for the geometric curvature energy
involving tangent spheres we provide a nontrivial lower bound that is attained
if and only if the admissible set is a round sphere.Comment: 44 pages, 2 figures; several minor correction
More Torsion in the Homology of the Matching Complex
A matching on a set is a collection of pairwise disjoint subsets of
of size two. Using computers, we analyze the integral homology of the matching
complex , which is the simplicial complex of matchings on the set . The main result is the detection of elements of order in the
homology for . Specifically, we show that there are
elements of order 5 in the homology of for and for . The only previously known value was , and in this particular
case we have a new computer-free proof. Moreover, we show that there are
elements of order 7 in the homology of for all odd between 23 and 41
and for . In addition, there are elements of order 11 in the homology of
and elements of order 13 in the homology of . Finally, we
compute the ranks of the Sylow 3- and 5-subgroups of the torsion part of
for ; a complete description of the homology
already exists for . To prove the results, we use a
representation-theoretic approach, examining subcomplexes of the chain complex
of obtained by letting certain groups act on the chain complex.Comment: 35 pages, 10 figure
On the Expansions in Spin Foam Cosmology
We discuss the expansions used in spin foam cosmology. We point out that
already at the one vertex level arbitrarily complicated amplitudes contribute,
and discuss the geometric asymptotics of the five simplest ones. We discuss
what type of consistency conditions would be required to control the expansion.
We show that the factorisation of the amplitude originally considered is best
interpreted in topological terms. We then consider the next higher term in the
graph expansion. We demonstrate the tension between the truncation to small
graphs and going to the homogeneous sector, and conclude that it is necessary
to truncate the dynamics as well.Comment: 17 pages, 4 figures, published versio
Homotopy Theory of Strong and Weak Topological Insulators
We use homotopy theory to extend the notion of strong and weak topological
insulators to the non-stable regime (low numbers of occupied/empty energy
bands). We show that for strong topological insulators in d spatial dimensions
to be "truly d-dimensional", i.e. not realizable by stacking lower-dimensional
insulators, a more restrictive definition of "strong" is required. However,
this does not exclude weak topological insulators from being "truly
d-dimensional", which we demonstrate by an example. Additionally, we prove some
useful technical results, including the homotopy theoretic derivation of the
factorization of invariants over the torus into invariants over spheres in the
stable regime, as well as the rigorous justification of replacing by
and by as is common in the current
literature.Comment: 11 pages, 3 figure
Differences in client and therapist views of the working alliance in drug treatment
Background - There is growing evidence that the therapeutic alliance is one of the most consistent predictors of retention and outcomes in drug treatment. Recent psychotherapy research has indicated that there is a lack of agreement between client, therapist and observer ratings of the therapeutic alliance; however, the clinical implications of this lack of consensus have not been explored.
Aims - The aims of the study are to (1) explore the extent to which, in drug treatment, clients and counsellors agree in their perceptions of their alliance, and (2) investigate whether the degree of disagreement between clients and counsellors is related to retention in treatment.
Methods - The study recruited 187 clients starting residential rehabilitation treatment for drug misuse in three UK services. Client and counsellor ratings of the therapeutic alliance (using the WAI-S) were obtained during weeks 1-12. Retention was in this study defined as remaining in treatment for at least 12 weeks.
Results - Client and counsellor ratings of the alliance were only weakly related (correlations ranging from r = 0.07 to 0.42) and tended to become more dissimilar over the first 12 weeks in treatment. However, whether or not clients and counsellors agreed on the quality of their relationship did not influence whether clients were retained in treatment.
Conclusions - The low consensus between client and counsellor views of the alliance found in this and other studies highlights the need for drug counsellors to attend closely to their clients' perceptions of the alliance and to seek regular feedback from clients regarding their feelings about their therapeutic relationship
The virtual Haken conjecture: Experiments and examples
A 3-manifold is Haken if it contains a topologically essential surface. The
Virtual Haken Conjecture says that every irreducible 3-manifold with infinite
fundamental group has a finite cover which is Haken. Here, we discuss two
interrelated topics concerning this conjecture.
First, we describe computer experiments which give strong evidence that the
Virtual Haken Conjecture is true for hyperbolic 3-manifolds. We took the
complete Hodgson-Weeks census of 10,986 small-volume closed hyperbolic
3-manifolds, and for each of them found finite covers which are Haken. There
are interesting and unexplained patterns in the data which may lead to a better
understanding of this problem.
Second, we discuss a method for transferring the virtual Haken property under
Dehn filling. In particular, we show that if a 3-manifold with torus boundary
has a Seifert fibered Dehn filling with hyperbolic base orbifold, then most of
the Dehn filled manifolds are virtually Haken. We use this to show that every
non-trivial Dehn surgery on the figure-8 knot is virtually Haken.Comment: Published by Geometry and Topology at
http://www.maths.warwick.ac.uk/gt/GTVol7/paper12.abs.htm
High density QCD on a Lefschetz thimble?
It is sometimes speculated that the sign problem that afflicts many quantum
field theories might be reduced or even eliminated by choosing an alternative
domain of integration within a complexified extension of the path integral (in
the spirit of the stationary phase integration method). In this paper we start
to explore this possibility somewhat systematically. A first inspection reveals
the presence of many difficulties but - quite surprisingly - most of them have
an interesting solution. In particular, it is possible to regularize the
lattice theory on a Lefschetz thimble, where the imaginary part of the action
is constant and disappears from all observables. This regularization can be
justified in terms of symmetries and perturbation theory. Moreover, it is
possible to design a Monte Carlo algorithm that samples the configurations in
the thimble. This is done by simulating, effectively, a five dimensional
system. We describe the algorithm in detail and analyze its expected cost and
stability. Unfortunately, the measure term also produces a phase which is not
constant and it is currently very expensive to compute. This residual sign
problem is expected to be much milder, as the dominant part of the integral is
not affected, but we have still no convincing evidence of this. However, the
main goal of this paper is to introduce a new approach to the sign problem,
that seems to offer much room for improvements. An appealing feature of this
approach is its generality. It is illustrated first in the simple case of a
scalar field theory with chemical potential, and then extended to the more
challenging case of QCD at finite baryonic density.Comment: Misleading footnote 1 corrected: locality deserves better
investigations. Formula (31) corrected (we thank Giovanni Eruzzi for this
observation). Note different title in journal versio
- …
