1,922 research outputs found
Population III Gamma Ray Bursts
We discuss a model of Poynting-dominated gamma-ray bursts from the collapse
of very massive first generation (pop. III) stars. From redshifts of order 20,
the resulting relativistic jets would radiate in the hard X-ray range around 50
keV and above, followed after roughly a day by an external shock component
peaking around a few keV. On the same timescales an inverse Compton component
around 75 GeV may be expected, as well as a possible infra-red flash. The
fluences of these components would be above the threshold for detectors such as
Swift and Fermi, providing potentially valuable information on the formation
and properties of what may be the first luminous objects and their black holes
in the high redshift Universe.Comment: 12 pages; Apj, subm. 12/10/2009; accepted 04/12/201
Rapid Bursts of \u3ci\u3eAndrogen-Binding Protein (Abp)\u3c/i\u3e Gene Duplication Occurred Independently in Diverse Mammals
Background
The draft mouse (Mus musculus) genome sequence revealed an unexpected proliferation of gene duplicates encoding a family of secretoglobin proteins including the androgen-binding protein (ABP) α, β and γ subunits. Further investigation of 14 α-like (Abpa) and 13 β- or γ-like (Abpbg) undisrupted gene sequences revealed a rich diversity of developmental stage-, sex- and tissue-specific expression. Despite these studies, our understanding of the evolution of this gene family remains incomplete. Questions arise from imperfections in the initial mouse genome assembly and a dearth of information about the gene family structure in other rodents and mammals. Results
Here, we interrogate the latest \u27finished\u27 mouse (Mus musculus) genome sequence assembly to show that the Abp gene repertoire is, in fact, twice as large as reported previously, with 30 Abpa and 34 Abpbg genes and pseudogenes. All of these have arisen since the last common ancestor with rat (Rattus norvegicus). We then demonstrate, by sequencing homologs from species within the Mus genus, that this burst of gene duplication occurred very recently, within the past seven million years. Finally, we survey Abp orthologs in genomes from across the mammalian clade and show that bursts of Abp gene duplications are not specific to the murid rodents; they also occurred recently in the lagomorph (rabbit, Oryctolagus cuniculus) and ruminant (cattle, Bos taurus) lineages, although not in other mammalian taxa. Conclusion
We conclude that Abp genes have undergone repeated bursts of gene duplication and adaptive sequence diversification driven by these genes\u27 participation in chemosensation and/or sexual identification
The last gasps of VY CMa: Aperture synthesis and adaptive optics imagery
We present new observations of the red supergiant VY CMa at 1.25 micron, 1.65
micron, 2.26 micron, 3.08 micron and 4.8 micron. Two complementary
observational techniques were utilized: non-redundant aperture masking on the
10-m Keck-I telescope yielding images of the innermost regions at unprecedented
resolution, and adaptive optics imaging on the ESO 3.6-m telescope at La Silla
attaining extremely high (~10^5) peak-to-noise dynamic range over a wide field.
For the first time the inner dust shell has been resolved in the near-infrared
to reveal a one-sided extension of circumstellar emission within 0.1" (~15
R_star) of the star. The line-of-sight optical depths of the circumstellar dust
shell at 1.65 micron, 2.26 micron, and 3.08 micron have been estimated to be
1.86 +/- 0.42, 0.85 +/- 0.20, and 0.44 +/- 0.11. These new results allow the
bolometric luminosity of VY~CMa to be estimated independent of the dust shell
geometry, yielding L_star ~ 2x10^5 L_sun. A variety of dust condensations,
including a large scattering plume and a bow-shaped dust feature, were observed
in the faint, extended nebula up to 4" from the central source. While the
origin of the nebulous plume remains uncertain, a geometrical model is
developed assuming the plume is produced by radially-driven dust grains forming
at a rotating flow insertion point with a rotational period between 1200-4200
years, which is perhaps the stellar rotational period or the orbital period of
an unseen companion.Comment: 25 pages total with 1 table and 5 figures. Accepted by Astrophysical
Journal (to appear in February 1999
Ejecta and progenitor of the low-luminosity Type IIP supernova 2003Z
The origin of low-luminosity Type IIP supernovae is unclear: they have been
proposed to originate either from massive (about 25 Msun) or low-mass (about 9
Msun) stars. We wish to determine parameters of the low-luminosity Type IIP
supernova 2003Z, to estimate a mass-loss rate of the presupernova, and to
recover a progenitor mass. We compute the hydrodynamic models of the supernova
to describe the light curves and the observed expansion velocities. The wind
density of the presupernova is estimated using a thin shell model for the
interaction with circumstellar matter. We estimate an ejecta mass of 14 Msun,
an explosion energy of 2.45x10^50 erg, a presupernova radius of 229 Rsun, and a
radioactive Ni-56 amount of 0.0063 Msun. The upper limit of the wind density
parameter in the presupernova vicinity is 10^13 g/cm, and the mass lost at the
red/yellow supergiant stage is less than 0.6 Msun assuming the constant
mass-loss rate. The estimated progenitor mass is in the range of 14.4-17.4
Msun. The presupernova of SN 2003Z was probably a yellow supergiant at the time
of the explosion. The progenitor mass of SN 2003Z is lower than those of SN
1987A and SN 1999em, normal Type IIP supernovae, but higher than the lower
limit of stars undergoing a core collapse. We propose an observational test
based on the circumstellar interaction to discriminate between the massive
(about 25 Msun) and moderate-mass (about 16 Msun) scenarios.Comment: 8 pages, 9 figures, 3 tables, accepted for publication in Astronomy &
Astrophysics; one reference remove
Rapid bursts of gene duplication occurred independently in diverse mammals
Background:
The draft mouse (Mus musculus) genome sequence revealed an unexpected proliferation of gene duplicates encoding a family of secretoglobin proteins including the androgen-binding protein (ABP) α, β and γ subunits. Further investigation of 14 α-like (Abpa) and 13 β- or γ-like (Abpbg) undisrupted gene sequences revealed a rich diversity of developmental stage-, sex- and tissue-specific expression. Despite these studies, our understanding of the evolution of this gene family remains incomplete. Questions arise from imperfections in the initial mouse genome assembly and a dearth of information about the gene family structure in other rodents and mammals.
Results:
Here, we interrogate the latest 'finished' mouse (Mus musculus) genome sequence assembly to show that the Abp gene repertoire is, in fact, twice as large as reported previously, with 30 Abpa and 34 Abpbg genes and pseudogenes. All of these have arisen since the last common ancestor with rat (Rattus norvegicus). We then demonstrate, by sequencing homologs from species within the Mus genus, that this burst of gene duplication occurred very recently, within the past seven million years. Finally, we survey Abp orthologs in genomes from across the mammalian clade and show that bursts of Abp gene duplications are not specific to the murid rodents; they also occurred recently in the lagomorph (rabbit, Oryctolagus cuniculus) and ruminant (cattle, Bos taurus) lineages, although not in other mammalian taxa.
Conclusion:
We conclude that Abp genes have undergone repeated bursts of gene duplication and adaptive sequence diversification driven by these genes' participation in chemosensation and/or sexual identification. </p
White dwarf spins from low mass stellar evolution models
The prediction of the spins of the compact remnants is a fundamental goal of
the theory of stellar evolution. Here, we confront the predictions for white
dwarf spins from evolutionary models including rotation with observational
constraints. We perform stellar evolution calculations for stars in the mass
range 1... 3\mso, including the physics of rotation, from the zero age main
sequence into the TP-AGB stage. We calculate two sets of model sequences, with
and without inclusion of magnetic fields. From the final computed models of
each sequence, we deduce the angular momenta and rotational velocities of the
emerging white dwarfs. While models including magnetic torques predict white
dwarf rotational velocities between 2 and 10 km s, those from the
non-magnetic sequences are found to be one to two orders of magnitude larger,
well above empirical upper limits. We find the situation analogous to that in
the neutron star progenitor mass range, and conclude that magnetic torques may
be required in order to understand the slow rotation of compact stellar
remnants in general.Comment: Accepted for A&A Letter
Unusually Weak Diffuse Interstellar Bands toward HD 62542
As part of an extensive survey of diffuse interstellar bands (DIBs), we have
obtained optical spectra of the moderately reddened B5V star HD 62542, which is
known to have an unusual UV extinction curve of the type usually identified
with dark clouds. The typically strongest of the commonly catalogued DIBs
covered by the spectra -- those at 5780, 5797, 6270, 6284, and 6614 A -- are
essentially absent in this line of sight, in marked contrast with other lines
of sight of similar reddening. We compare the HD 62542 line of sight with
others exhibiting a range of extinction properties and molecular abundances and
interpret the weakness of the DIBs as an extreme case of deficient DIB
formation in a dense cloud whose more diffuse outer layers have been stripped
away. We comment on the challenges these observations pose for identifying the
carriers of the diffuse bands.Comment: 20 pages, 4 figures; aastex; accepted by Ap
Late Emission from the Type Ib/c SN 2001em: Overtaking the Hydrogen Envelope
The Type Ib/c supernova SN 2001em was observed to have strong radio, X-ray,
and Halpha emission at an age of about 2.5 yr. Although the radio and X-ray
emission have been attributed to an off-axis gamma-ray burst, we model the
emission as the interaction of normal SN Ib/c ejecta with a dense, massive (3
Msun) circumstellar shell at a distance about 7 x 10^{16} cm. We investigate
two models, in which the circumstellar shell has or has not been overtaken by
the forward shock at the time of the X-ray observation. The circumstellar shell
was presumably formed by vigorous mass loss with a rate (2-10) x 10^{-3}
Msun/yr at 1000-2000 yr prior to the supernova explosion. The hydrogen envelope
was completely lost, and subsequently was swept up and accelerated by the fast
wind of the presupernova star up to a velocity of 30-50 km/s. Although
interaction with the shell can explain most of the late emission properties of
SN 2001em, we need to invoke clumping of the gas to explain the low absorption
at X-ray and radio wavelengths.Comment: 26 pages, 4 figures, ApJ submitte
- …
