27 research outputs found
Asymptotic Implied Volatility at the Second Order with Application to the SABR Model
We provide a general method to compute a Taylor expansion in time of implied
volatility for stochastic volatility models, using a heat kernel expansion.
Beyond the order 0 implied volatility which is already known, we compute the
first order correction exactly at all strikes from the scalar coefficient of
the heat kernel expansion. Furthermore, the first correction in the heat kernel
expansion gives the second order correction for implied volatility, which we
also give exactly at all strikes. As an application, we compute this asymptotic
expansion at order 2 for the SABR model.Comment: 27 pages; v2: typos fixed and a few notation changes; v3: published
version, typos fixed and comments added. in Large Deviations and Asymptotic
Methods in Finance, Springer (2015) 37-6
Borcherds symmetries in M-theory
It is well known but rather mysterious that root spaces of the Lie
groups appear in the second integral cohomology of regular, complex, compact,
del Pezzo surfaces. The corresponding groups act on the scalar fields (0-forms)
of toroidal compactifications of M theory. Their Borel subgroups are actually
subgroups of supergroups of finite dimension over the Grassmann algebra of
differential forms on spacetime that have been shown to preserve the
self-duality equation obeyed by all bosonic form-fields of the theory. We show
here that the corresponding duality superalgebras are nothing but Borcherds
superalgebras truncated by the above choice of Grassmann coefficients. The full
Borcherds' root lattices are the second integral cohomology of the del Pezzo
surfaces. Our choice of simple roots uses the anti-canonical form and its known
orthogonal complement. Another result is the determination of del Pezzo
surfaces associated to other string and field theory models. Dimensional
reduction on corresponds to blow-up of points in general position
with respect to each other. All theories of the Magic triangle that reduce to
the sigma model in three dimensions correspond to singular del Pezzo
surfaces with (normal) singularity at a point. The case of type I and
heterotic theories if one drops their gauge sector corresponds to non-normal
(singular along a curve) del Pezzo's. We comment on previous encounters with
Borcherds algebras at the end of the paper.Comment: 30 pages. Besides expository improvements, we exclude by hand real
fermionic simple roots when they would naively aris
A Stochastic Control Approach to No-Arbitrage Bounds Given Marginals, with an Application to Lookback Options. SSRN eLibrary,
Abstract We consider the problem of superhedging under volatility uncertainty for an investor allowed to dynamically trade the underlying asset, and statically trade European call options for all possible strikes with some given maturity. This problem is classically approached by means of the Skorohod Embedding Problem (SEP). Instead, we provide a dual formulation which converts the superhedging problem into a continuous martingale optimal transportation problem. We then show that this formulation allows to recover previously known results about Lookback options. In particular, our methodology induces a new presentation of the Azéma-Yor solution of the SEP
A Stochastic Control Approach to No-Arbitrage Bounds Given Marginals, with an Application to Lookback Options. SSRN eLibrary,
Abstract We consider the problem of superhedging under volatility uncertainty for an investor allowed to dynamically trade the underlying asset, and statically trade European call options for all possible strikes with some given maturity. This problem is classically approached by means of the Skorohod Embedding Problem (SEP). Instead, we provide a dual formulation which converts the superhedging problem into a continuous martingale optimal transportation problem. We then show that this formulation allows to recover previously known results about Lookback options. In particular, our methodology induces a new proof of the optimality of Azéma-Yor solution of the SEP for a certain class of Lookback options. Unlike the SEP technique, our approach applies to a large class of exotics and is suitable for numerical approximation techniques. Other examples, contained i
LEVERAGED ETF IMPLIED VOLATILITIES FROM ETF DYNAMICS
The growth of the exchange-traded fund (ETF) industry has given rise to the trading of options written on ETFs and their leveraged counterparts (LETFs). We study the relationship between the ETF and LETF implied volatility surfaces when the underlying ETF is modeled by a general class of local-stochastic volatility models. A closed-form approximation for prices is derived for European-style options whose payoffs depend on the terminal value of the ETF and/or LETF. Rigorous error bounds for this pricing approximation are established. A closed-form approximation for implied volatilities is also derived. We also discuss a scaling procedure for comparing implied volatilities across leverage ratios. The implied volatility expansions and scalings are tested in three settings: Heston, limited constant elasticity of variance (CEV), and limited SABR; the last two are regularized versions of the well-known CEV and SABR models
Analytical approximation of the transition density in a local volatility model
We present a simplified approach to the analytical approximation of the transition density related to a general local volatility model. The methodology is sufficiently flexible to be extended to time-dependent coefficients, multi-dimensional stochastic volatility models, degenerate parabolic PDEs related to Asian options and also to include jumps
Small-Time Asymptotics for the At-the-Money Implied Volatility in a Multi-dimensional Local Volatility Model
We consider a basket or spread option based on a multi-dimensional local volatility model. Bayer and Laurence (Commun. Pure. Appl. Math., 67(10), 2014, [5]) derived highly accurate analytic formulas for prices and implied volatilities of such options when the options are not at the money. We now extend these results to the ATM case. Moreover, we also derive similar formulas for the local volatility of the basket
Solvable local and stochastic volatility models: supersymmetric methods in option pricing
In this paper we provide an extensive classification of one- and two-dimensional diffusion processes which admit an exact solution to the Kolmogorov (and hence Black-Scholes) equation (in terms of hypergeometric functions). By identifying the one-dimensional solvable processes with the class of integrable superpotentials introduced recently in supersymmetric quantum mechanics, we obtain new analytical solutions. In particular, by applying supersymmetric transformations on a known solvable diffusion process (such as the Natanzon process for which the solution is given by a hypergeometric function), we obtain a hierarchy of new solutions. These solutions are given by a sum of hypergeometric functions, generalizing the results obtained in a paper by Albanese et al. (Albanese, C., Campolieti, G., Carr, P. and Lipton, A., Black-Scholes goes hypergeometric. Risk Mag., 2001, 14, 99-103). For two-dimensional processes, more precisely stochastic volatility models, the classification is achieved for a specific class called gauge-free models including the Heston model, the 3 / 2-model and the geometric Brownian model. We then present a new exact stochastic volatility model belonging to this class.Solvable diffusion process, Supersymmetry, Differential geometry,
