1,087 research outputs found

    Defect Modes and Homogenization of Periodic Schr\"odinger Operators

    Full text link
    We consider the discrete eigenvalues of the operator H_\eps=-\Delta+V(\x)+\eps^2Q(\eps\x), where V(\x) is periodic and Q(\y) is localized on Rd,  d1\R^d,\ \ d\ge1. For \eps>0 and sufficiently small, discrete eigenvalues may bifurcate (emerge) from spectral band edges of the periodic Schr\"odinger operator, H_0 = -\Delta_\x+V(\x), into spectral gaps. The nature of the bifurcation depends on the homogenized Schr\"odinger operator L_{A,Q}=-\nabla_\y\cdot A \nabla_\y +\ Q(\y). Here, AA denotes the inverse effective mass matrix, associated with the spectral band edge, which is the site of the bifurcation.Comment: 26 pages, 3 figures, to appear SIAM J. Math. Ana

    Formation of Quantum Shock Waves by Merging and Splitting Bose-Einstein Condensates

    Full text link
    The processes of merging and splitting dilute-gas Bose-Einstein condensates are studied in the nonadiabatic, high-density regime. Rich dynamics are found. Depending on the experimental parameters, uniform soliton trains containing more than ten solitons or the formation of a high-density bulge as well as quantum (or dispersive) shock waves are observed experimentally within merged BECs. Our numerical simulations indicate the formation of many vortex rings. In the case of splitting a BEC, the transition from sound-wave formation to dispersive shock-wave formation is studied by use of increasingly stronger splitting barriers. These experiments realize prototypical dispersive shock situations.Comment: 10 pages, 8 figure

    Matching Dynamics with Constraints

    Full text link
    We study uncoordinated matching markets with additional local constraints that capture, e.g., restricted information, visibility, or externalities in markets. Each agent is a node in a fixed matching network and strives to be matched to another agent. Each agent has a complete preference list over all other agents it can be matched with. However, depending on the constraints and the current state of the game, not all possible partners are available for matching at all times. For correlated preferences, we propose and study a general class of hedonic coalition formation games that we call coalition formation games with constraints. This class includes and extends many recently studied variants of stable matching, such as locally stable matching, socially stable matching, or friendship matching. Perhaps surprisingly, we show that all these variants are encompassed in a class of "consistent" instances that always allow a polynomial improvement sequence to a stable state. In addition, we show that for consistent instances there always exists a polynomial sequence to every reachable state. Our characterization is tight in the sense that we provide exponential lower bounds when each of the requirements for consistency is violated. We also analyze matching with uncorrelated preferences, where we obtain a larger variety of results. While socially stable matching always allows a polynomial sequence to a stable state, for other classes different additional assumptions are sufficient to guarantee the same results. For the problem of reaching a given stable state, we show NP-hardness in almost all considered classes of matching games.Comment: Conference Version in WINE 201

    Socially stable matchings in the hospitals / residents problem

    Get PDF
    In the Hospitals/Residents (HR) problem, agents are partitioned into hospitals and residents. Each agent wishes to be matched to an agent in the other set and has a strict preference over these potential matches. A matching is stable if there are no blocking pairs, i.e., no pair of agents that prefer each other to their assigned matches. Such a situation is undesirable as it could lead to a deviation in which the blocking pair form a private arrangement outside the matching. This however assumes that the blocking pair have social ties or communication channels to facilitate the deviation. Relaxing the stability definition to take account of the potential lack of social ties between agents can yield larger stable matchings. In this paper, we define the Hospitals/Residents problem under Social Stability (HRSS) which takes into account social ties between agents by introducing a social network graph to the HR problem. Edges in the social network graph correspond to resident-hospital pairs in the HR instance that know one another. Pairs that do not have corresponding edges in the social network graph can belong to a matching M but they can never block M. Relative to a relaxed stability definition for HRSS, called social stability, we show that socially stable matchings can have different sizes and the problem of finding a maximum socially stable matching is NP-hard, though approximable within 3/2. Furthermore we give polynomial time algorithms for three special cases of the problem

    Deterministic drift instability and stochastic thermal perturbations of magnetic dissipative droplet solitons

    Get PDF
    The magnetic dissipative droplet is a strongly nonlinear wave structure that can be stabilized in a thin film ferromagnet exhibiting perpendicular magnetic anisotropy by use of spin transfer torque. These structures have been observed experimentally at room temperature, showcasing their robustness against noise. Here, we quantify the effects of thermal noise by deriving stochastic equations of motion for a droplet based on soliton perturbation theory. First, it is found that deterministic droplets are linearly unstable at large bias currents, subject to a drift instability. When the droplet is linearly stable, our framework allows us to analytically compute the droplet's generation linewidth and center variance. Additionally, we study the influence of nonlocal and Oersted fields with micromagnetic simulations, providing insight into their effect on the generation linewidth. These results motivate detailed experiments on the current and temperature-dependent linewidth as well as drift instability statistics of droplets, which are important figures-of-merit in the prospect of droplet-based applications

    On Linear Congestion Games with Altruistic Social Context

    Full text link
    We study the issues of existence and inefficiency of pure Nash equilibria in linear congestion games with altruistic social context, in the spirit of the model recently proposed by de Keijzer {\em et al.} \cite{DSAB13}. In such a framework, given a real matrix Γ=(γij)\Gamma=(\gamma_{ij}) specifying a particular social context, each player ii aims at optimizing a linear combination of the payoffs of all the players in the game, where, for each player jj, the multiplicative coefficient is given by the value γij\gamma_{ij}. We give a broad characterization of the social contexts for which pure Nash equilibria are always guaranteed to exist and provide tight or almost tight bounds on their prices of anarchy and stability. In some of the considered cases, our achievements either improve or extend results previously known in the literature

    Network Creation Games: Think Global - Act Local

    Full text link
    We investigate a non-cooperative game-theoretic model for the formation of communication networks by selfish agents. Each agent aims for a central position at minimum cost for creating edges. In particular, the general model (Fabrikant et al., PODC'03) became popular for studying the structure of the Internet or social networks. Despite its significance, locality in this game was first studied only recently (Bil\`o et al., SPAA'14), where a worst case locality model was presented, which came with a high efficiency loss in terms of quality of equilibria. Our main contribution is a new and more optimistic view on locality: agents are limited in their knowledge and actions to their local view ranges, but can probe different strategies and finally choose the best. We study the influence of our locality notion on the hardness of computing best responses, convergence to equilibria, and quality of equilibria. Moreover, we compare the strength of local versus non-local strategy-changes. Our results address the gap between the original model and the worst case locality variant. On the bright side, our efficiency results are in line with observations from the original model, yet we have a non-constant lower bound on the price of anarchy.Comment: An extended abstract of this paper has been accepted for publication in the proceedings of the 40th International Conference on Mathematical Foundations on Computer Scienc

    Routing Games over Time with FIFO policy

    Full text link
    We study atomic routing games where every agent travels both along its decided edges and through time. The agents arriving on an edge are first lined up in a \emph{first-in-first-out} queue and may wait: an edge is associated with a capacity, which defines how many agents-per-time-step can pop from the queue's head and enter the edge, to transit for a fixed delay. We show that the best-response optimization problem is not approximable, and that deciding the existence of a Nash equilibrium is complete for the second level of the polynomial hierarchy. Then, we drop the rationality assumption, introduce a behavioral concept based on GPS navigation, and study its worst-case efficiency ratio to coordination.Comment: Submission to WINE-2017 Deadline was August 2nd AoE, 201
    corecore