13,283 research outputs found
Phase transition in protocols minimizing work fluctuations
For two canonical examples of driven mesoscopic systems - a
harmonically-trapped Brownian particle and a quantum dot - we numerically
determine the finite-time protocols that optimize the compromise between the
standard deviation and the mean of the dissipated work. In the case of the
oscillator, we observe a collection of protocols that smoothly trade-off
between average work and its fluctuations. However, for the quantum dot, we
find that as we shift the weight of our optimization objective from average
work to work standard deviation, there is an analog of a first-order phase
transition in protocol space: two distinct protocols exchange global optimality
with mixed protocols akin to phase coexistence. As a result, the two types of
protocols possess qualitatively different properties and remain distinct even
in the infinite duration limit: optimal-work-fluctuation protocols never
coalesce with the minimal work protocols, which therefore never become
quasistatic.Comment: 6 pages, 6 figures + SI as ancillary fil
Photocatalytic production of organic compounds from CO and H2O in a simulated Martian atmosphere
[14C]CO2 and [14C]organic compounds are formed when a mixture of [14C]CO and water vapor diluted in [12C]CO2 or N2 is irradiated with ultraviolet light in the presence of soil or pulverized vycor substratum. The [14C]CO2 is recoverable from the gas phase, the [14C]organic products from the substratum. Three organic products have been tentatively identified as formaldehyde, acetaldehyde, and glycolic acid. The relative yields of [14C]CO2 and [14C]organics are wavelength- and surface-dependent. Conversion of CO to CO2 occurs primarily at wavelengths shorter than 2000 angstrom, apparently involves the photolysis of water, and is inhibited by increasing amounts of vycor substratum. Organic formation occurs over a broad spectral range below 3000 angstrom and increases with increasing amounts of substratum. It is suggested that organic synthesis results from adsorption of CO and H2O on surfaces, with excitation of one or both molecules occurring at wavelengths longer than those absorbed by the free gases. This process may occur on Mars and may have been important on the primitive earth
Wide-band current preamplifier for conductance measurements with large input capacitance
A wide-band current preamplifier based on a composite operational amplifier
is proposed. It has been shown that the bandwidth of the preamplifier can be
significantly increased by enhancing the effective open-loop gain of the
composite preamplifier. The described preamplifier with current gain 10 V/A
showed the bandwidth of about 100 kHz with 1 nF input shunt capacitance. The
current noise of the amplifier was measured to be about 46 fA/
at 1 kHz, close to the design noise minimum. The voltage noise was found to be
about 2.9 nV/ at 1 kHz, which is in a good agreement with the
value expected for the operational amplifier used in the input stage. By
analysing the total noise produced by the preamplifier we found the optimal
frequency range suitable for the fast lock-in measurements to be from 1 kHz to
2 kHz. To get the same signal-to-noise ratio, the reported preamplifier
requires roughly 10% of the integration time used in measurements made with a
conventional preamplifier.Comment: 5 pages, 4 figure
Large-Area, Low-Noise, High Speed, Photodiode-Based Fluorescence Detectors with Fast Overdrive Recovery
Two large-area, low noise, high speed fluorescence detectors have been built.
One detector consists of a photodiode with an area of 28 mm x 28 mm and a low
noise transimpedance amplifier. This detector has a input light-equivalent
spectral noise density of less than 3 pW/Hz^1/2, can recover from a large
scattered light pulse within 10 us, and has a bandwidth of at least 900 kHz.
The second detector consists of a 16 mm diameter avalanche photodiode and a
low-noise transimpedance amplifier. This detector has an input light-equivalent
spectral noise density of 0.08 pW/Hz^1/2, also can recover from a large
scattered light pulse within 10 us, and has a bandwidth of 1 MHz.Comment: Submitted to Review of Scientific Instrument
Magneto-Optical Spectrum Analyzer
We present a method for the investigation of gigahertz magnetization dynamics
of single magnetic nano elements. By combining a frequency domain approach with
a micro focus Kerr effect detection, a high sensitivity to magnetization
dynamics with submicron spatial resolution is achieved. It allows spectra of
single nanostructures to be recorded. Results on the uniform precession in soft
magnetic platelets are presented.Comment: 5 pages, 7 figure
Fusion of neutron rich oxygen isotopes in the crust of accreting neutron stars
Fusion reactions in the crust of an accreting neutron star are an important
source of heat, and the depth at which these reactions occur is important for
determining the temperature profile of the star. Fusion reactions depend
strongly on the nuclear charge . Nuclei with can fuse at low
densities in a liquid ocean. However, nuclei with Z=8 or 10 may not burn until
higher densities where the crust is solid and electron capture has made the
nuclei neutron rich. We calculate the factor for fusion reactions of
neutron rich nuclei including O + O and Ne + Ne. We
use a simple barrier penetration model. The factor could be further
enhanced by dynamical effects involving the neutron rich skin. This possible
enhancement in should be studied in the laboratory with neutron rich
radioactive beams. We model the structure of the crust with molecular dynamics
simulations. We find that the crust of accreting neutron stars may contain
micro-crystals or regions of phase separation. Nevertheless, the screening
factors that we determine for the enhancement of the rate of thermonuclear
reactions are insensitive to these features. Finally, we calculate the rate of
thermonuclear O + O fusion and find that O should burn at
densities near g/cm. The energy released from this and similar
reactions may be important for the temperature profile of the star.Comment: 7 pages, 4 figs, minor changes, to be published in Phys. Rev.
Dynamics of First Order Transitions with Gravity Duals
A first order phase transition usually proceeds by nucleating bubbles of the
new phase which then rapidly expand. In confining gauge theories with a gravity
dual, the deconfined phase is often described by a black hole. If one starts in
this phase and lowers the temperature, the usual description of how the phase
transition proceeds violates the area theorem. We study the dynamics of this
phase transition using the insights from the dual gravitational description,
and resolve this apparent contradiction.Comment: 11 pages, 1 figure. v2: minor clarifications, reference adde
Neutrino Scattering in Heterogeneous Supernova Plasmas
Neutrinos in core collapse supernovae are likely trapped by neutrino-nucleus
elastic scattering. Using molecular dynamics simulations, we calculate neutrino
mean free paths and ion-ion correlation functions for heterogeneous plasmas.
Mean free paths are systematically shorter in plasmas containing a mixture of
ions compared to a plasma composed of a single ion species. This is because
neutrinos can scatter from concentration fluctuations. The dynamical response
function of a heterogeneous plasma is found to have an extra peak at low
energies describing the diffusion of concentration fluctuations. Our exact
molecular dynamics results for the static structure factor reduce to the Debye
Huckel approximation, but only in the limit of very low momentum transfers.Comment: 11 pages, 13 figure
Black Strings and Classical Hair
We examine the geometry near the event horizon of a family of black string
solutions with traveling waves. It has previously been shown that the metric is
continuous there. Contrary to expectations, we find that the geometry is not
smooth, and the horizon becomes singular whenever a wave is present. Both five
dimensional and six dimensional black strings are considered with similar
results.Comment: 14 pages, harvma
Gravitational Properties of Monopole Spacetimes Near the Black Hole Threshold
Although nonsingular spacetimes and those containing black holes are
qualitatively quite different, there are continuous families of configurations
that connect the two. In this paper we use self-gravitating monopole solutions
as tools for investigating the transition between these two types of
spacetimes. We show how causally distinct regions emerge as the black hole
limit is achieved, even though the measurements made by an external observer
vary continuously. We find that near-critical solutions have a naturally
defined entropy, despite the absence of a true horizon, and that this has a
clear connection with the Hawking-Bekenstein entropy. We find that certain
classes of near-critical solutions display naked black hole behavior, although
they are not truly black holes at all. Finally, we present a numerical
simulation illustrating how an incident pulse of matter can induce the
dynamical collapse of a monopole into an extremal black hole. We discuss the
implications of this process for the third law of black hole thermodynamics.Comment: 23 pages, 4 figures RevTe
- …
