2,464 research outputs found
Approximate Decentralized Bayesian Inference
This paper presents an approximate method for performing Bayesian inference
in models with conditional independence over a decentralized network of
learning agents. The method first employs variational inference on each
individual learning agent to generate a local approximate posterior, the agents
transmit their local posteriors to other agents in the network, and finally
each agent combines its set of received local posteriors. The key insight in
this work is that, for many Bayesian models, approximate inference schemes
destroy symmetry and dependencies in the model that are crucial to the correct
application of Bayes' rule when combining the local posteriors. The proposed
method addresses this issue by including an additional optimization step in the
combination procedure that accounts for these broken dependencies. Experiments
on synthetic and real data demonstrate that the decentralized method provides
advantages in computational performance and predictive test likelihood over
previous batch and distributed methods.Comment: This paper was presented at UAI 2014. Please use the following BibTeX
citation: @inproceedings{Campbell14_UAI, Author = {Trevor Campbell and
Jonathan P. How}, Title = {Approximate Decentralized Bayesian Inference},
Booktitle = {Uncertainty in Artificial Intelligence (UAI)}, Year = {2014}
Active Perception in Adversarial Scenarios using Maximum Entropy Deep Reinforcement Learning
We pose an active perception problem where an autonomous agent actively
interacts with a second agent with potentially adversarial behaviors. Given the
uncertainty in the intent of the other agent, the objective is to collect
further evidence to help discriminate potential threats. The main technical
challenges are the partial observability of the agent intent, the adversary
modeling, and the corresponding uncertainty modeling. Note that an adversary
agent may act to mislead the autonomous agent by using a deceptive strategy
that is learned from past experiences. We propose an approach that combines
belief space planning, generative adversary modeling, and maximum entropy
reinforcement learning to obtain a stochastic belief space policy. By
accounting for various adversarial behaviors in the simulation framework and
minimizing the predictability of the autonomous agent's action, the resulting
policy is more robust to unmodeled adversarial strategies. This improved
robustness is empirically shown against an adversary that adapts to and
exploits the autonomous agent's policy when compared with a standard
Chance-Constraint Partially Observable Markov Decision Process robust approach
Perfect countably infinite Steiner triple systems
We use a free construction to prove the existence of perfect Steiner triple systems on a countably infinite point set. We use a specific countably infinite family of partial Steiner triple systems to start the construction, thus yielding 2ℵ0 non-isomorphic perfect systems
Transferable Pedestrian Motion Prediction Models at Intersections
One desirable capability of autonomous cars is to accurately predict the
pedestrian motion near intersections for safe and efficient trajectory
planning. We are interested in developing transfer learning algorithms that can
be trained on the pedestrian trajectories collected at one intersection and yet
still provide accurate predictions of the trajectories at another, previously
unseen intersection. We first discussed the feature selection for transferable
pedestrian motion models in general. Following this discussion, we developed
one transferable pedestrian motion prediction algorithm based on Inverse
Reinforcement Learning (IRL) that infers pedestrian intentions and predicts
future trajectories based on observed trajectory. We evaluated our algorithm on
a dataset collected at two intersections, trained at one intersection and
tested at the other intersection. We used the accuracy of augmented
semi-nonnegative sparse coding (ASNSC), trained and tested at the same
intersection as a baseline. The result shows that the proposed algorithm
improves the baseline accuracy by 40% in the non-transfer task, and 16% in the
transfer task
Truncated Random Measures
Completely random measures (CRMs) and their normalizations are a rich source
of Bayesian nonparametric priors. Examples include the beta, gamma, and
Dirichlet processes. In this paper we detail two major classes of sequential
CRM representations---series representations and superposition
representations---within which we organize both novel and existing sequential
representations that can be used for simulation and posterior inference. These
two classes and their constituent representations subsume existing ones that
have previously been developed in an ad hoc manner for specific processes.
Since a complete infinite-dimensional CRM cannot be used explicitly for
computation, sequential representations are often truncated for tractability.
We provide truncation error analyses for each type of sequential
representation, as well as their normalized versions, thereby generalizing and
improving upon existing truncation error bounds in the literature. We analyze
the computational complexity of the sequential representations, which in
conjunction with our error bounds allows us to directly compare representations
and discuss their relative efficiency. We include numerous applications of our
theoretical results to commonly-used (normalized) CRMs, demonstrating that our
results enable a straightforward representation and analysis of CRMs that has
not previously been available in a Bayesian nonparametric context.Comment: To appear in Bernoulli; 58 pages, 3 figure
Crossmodal Attentive Skill Learner
This paper presents the Crossmodal Attentive Skill Learner (CASL), integrated
with the recently-introduced Asynchronous Advantage Option-Critic (A2OC)
architecture [Harb et al., 2017] to enable hierarchical reinforcement learning
across multiple sensory inputs. We provide concrete examples where the approach
not only improves performance in a single task, but accelerates transfer to new
tasks. We demonstrate the attention mechanism anticipates and identifies useful
latent features, while filtering irrelevant sensor modalities during execution.
We modify the Arcade Learning Environment [Bellemare et al., 2013] to support
audio queries, and conduct evaluations of crossmodal learning in the Atari 2600
game Amidar. Finally, building on the recent work of Babaeizadeh et al. [2017],
we open-source a fast hybrid CPU-GPU implementation of CASL.Comment: International Conference on Autonomous Agents and Multiagent Systems
(AAMAS) 2018, NIPS 2017 Deep Reinforcement Learning Symposiu
Socially Aware Motion Planning with Deep Reinforcement Learning
For robotic vehicles to navigate safely and efficiently in pedestrian-rich
environments, it is important to model subtle human behaviors and navigation
rules (e.g., passing on the right). However, while instinctive to humans,
socially compliant navigation is still difficult to quantify due to the
stochasticity in people's behaviors. Existing works are mostly focused on using
feature-matching techniques to describe and imitate human paths, but often do
not generalize well since the feature values can vary from person to person,
and even run to run. This work notes that while it is challenging to directly
specify the details of what to do (precise mechanisms of human navigation), it
is straightforward to specify what not to do (violations of social norms).
Specifically, using deep reinforcement learning, this work develops a
time-efficient navigation policy that respects common social norms. The
proposed method is shown to enable fully autonomous navigation of a robotic
vehicle moving at human walking speed in an environment with many pedestrians.Comment: 8 page
Decentralized Control of Partially Observable Markov Decision Processes using Belief Space Macro-actions
The focus of this paper is on solving multi-robot planning problems in
continuous spaces with partial observability. Decentralized partially
observable Markov decision processes (Dec-POMDPs) are general models for
multi-robot coordination problems, but representing and solving Dec-POMDPs is
often intractable for large problems. To allow for a high-level representation
that is natural for multi-robot problems and scalable to large discrete and
continuous problems, this paper extends the Dec-POMDP model to the
decentralized partially observable semi-Markov decision process (Dec-POSMDP).
The Dec-POSMDP formulation allows asynchronous decision-making by the robots,
which is crucial in multi-robot domains. We also present an algorithm for
solving this Dec-POSMDP which is much more scalable than previous methods since
it can incorporate closed-loop belief space macro-actions in planning. These
macro-actions are automatically constructed to produce robust solutions. The
proposed method's performance is evaluated on a complex multi-robot package
delivery problem under uncertainty, showing that our approach can naturally
represent multi-robot problems and provide high-quality solutions for
large-scale problems
- …
