420 research outputs found

    Synchronous Phase Shift at LHC

    Full text link
    The electron cloud in vacuum pipes of accelerators of positively charged particle beams causes a beam energy loss which could be estimated from the synchronous phase. Measurements done with beams of 75 ns, 50 ns, and 25 ns bunch spacing in the LHC for some fills in 2010 and 2011 show that the average energy loss depends on the total beam intensity in the ring. Later measurements during the scrubbing run with 50 ns beams show the reduction of the electron cloud due to scrubbing. Finally, measurements of the individual bunch phase give us information about the electron cloud build-up inside the batch and from batch to batch.Comment: Presented at ECLOUD'12: Joint INFN-CERN-EuCARD-AccNet Workshop on Electron-Cloud Effects, La Biodola, Isola d'Elba, Italy, 5-9 June 201

    A Review on Assisted Living Using Wearable Devices

    Get PDF
    Forecasts about the aging trend of the world population agree on identifying increased life expectancy as a serious risk factor for the financial sustainability of social healthcare systems if not properly supported by innovative care management policies. Such policies should include the integration within traditional healthcare services of assistive technologies as tools for prolonging healthy and independent living at home, but also for introducing innovations in clinical practice such as long-term and remote health monitoring. For their part, solutions for active and assisted living have now reached a high degree of technological maturity, thanks to the considerable amount of research work carried out in recent years to develop highly reliable and energy-efficient wearable sensors capable of enabling the development of systems to monitor activity and physiological parameters over time, and in a minimally invasive manner. This work reviews the role of wearable sensors in the design and development of assisted living solutions, focusing on human activity recognition by joint use of onboard electromyography sensors and inertial measurement units and on the acquisition of parameters related to overall physical and psychological conditions, such as heart activity and skin conductance

    Protease-Specific Biomarkers to Analyse Protease Inhibitors for Emphysema Associated with Alpha 1-Antitrypsin Deficiency. An Overview of Current Approaches.

    Get PDF
    As a known genetic cause of chronic obstructive pulmonary disease (COPD), alpha1-antitrypsin deficiency (AATD) can cause severe respiratory problems at a relatively young age. These problems are caused by decreased or absent levels of alpha1-antitrypsin (AAT), an antiprotease which is primarily functional in the respiratory system. If the levels of AAT fall below the protective threshold of 11 µM, the neutrophil-derived serine proteases neutrophil elastase (NE) and proteinase 3 (PR3), which are targets of AAT, are not sufficiently inhibited, resulting in excessive degradation of the lung parenchyma, increased inflammation, and increased susceptibility to infections. Because other therapies are still in the early phases of development, the only therapy currently available for AATD is AAT augmentation therapy. The controversy surrounding AAT augmentation therapy concerns its efficiency, as protection of lung function decline is not demonstrated, despite the treatment's proven significant effect on lung density change in the long term. In this review article, novel biomarkers of NE and PR3 activity and their use to assess the efficacy of AAT augmentation therapy are discussed. Furthermore, a series of seven synthetic NE and PR3 inhibitors that can be used to evaluate the specificity of the novel biomarkers, and with potential as new drugs, are discussed

    Driver Drowsiness Detection: A Machine Learning Approach on Skin Conductance

    Get PDF
    The majority of car accidents worldwide are caused by drowsy drivers. Therefore, it is important to be able to detect when a driver is starting to feel drowsy in order to warn them before a serious accident occurs. Sometimes, drivers are not aware of their own drowsiness, but changes in their body signals can indicate that they are getting tired. Previous studies have used large and intrusive sensor systems that can be worn by the driver or placed in the vehicle to collect information about the driver’s physical status from a variety of signals that are either physiological or vehicle-related. This study focuses on the use of a single wrist device that is comfortable for the driver to wear and appropriate signal processing to detect drowsiness by analyzing only the physiological skin conductance (SC) signal. To determine whether the driver is drowsy, the study tests three ensemble algorithms and finds that the Boosting algorithm is the most effective in detecting drowsiness with an accuracy of 89.4%. The results of this study show that it is possible to identify when a driver is drowsy using only signals from the skin on the wrist, and this encourages further research to develop a real-time warning system for early detection of drowsiness

    Overview on heat loads in the LHC

    Get PDF
    A consequence of the formation of electron cloud in beam chambers is the deposition of energy on their walls due to electron impacts. In cryogenic devices this can cause a significant heat load for the cryogenics system, posing constraints on machine design and operation At the LHC this effect is found to be quite strong and needs to be addressed to avoid performance limitations in view of the planned HL-LHC upgrade. Unexpectedly the eight LHC arcs show very dierent heat loads. These differences, which appeared after the 2013-14 shut-down period, are still unexplained and have been the subject of thorough investigations and characterizations. This contribution describes the main observations on the heat loads deposited on the arc beam screens with different beam conditions and in dierent moments of the LHC operational experience

    Adapting Participatory Action Research to Include Individuals with Intellectual and Developmental Disabilities during the COVID-19 Global Pandemic

    Get PDF
    Participatory action research (PAR), or the inclusion of those affected by the issues being studied, is a growing area of emphasis in disability research. The principles of PAR align with those of the disability rights movement, such that full inclusion and “nothing about us without us” extends as much to research as it does to any other area of life. Moreover, PAR allows for meaningful input from people with intellectual and developmental disabilities (I/DD), which enhances the likelihood that research results are relevant and important to the disability community. As research activity resumes and is adapted to the context of a global pandemic, it is crucial that a balance is struck to optimize the safety of individuals with I/DD without taking steps backwards from the progress towards more meaningful inclusion in research. Lessons learned from past participatory research projects have demonstrated that accommodations to enable equitable participation of individuals with IDD in the research process are crucial. COVID-19 has significantly affected the lives of individuals with I/DD directly; however, COVID-19 has also affected those with I/DD indirectly through the disruption to critical intervention and other clinical research. As research processes are adapted to align with COVID-19 guidelines, the inclusion of individuals with I/DD via PAR needs to be adapted as well. Recommendations for the continuation of PAR in the context of COVID-19 will be discussed as well as ways in which accommodations can be modified to this new context

    Methods of purification and application procedures of alpha1 antitrypsin: a long-lasting history

    Get PDF
    The aim of the present report is to review the literature addressing the methods developed for the purification of alpha1-antitrypsin (AAT) from the 1950s to the present. AAT is a glycoprotein whose main function is to protect tissues from human neutrophil elastase (HNE) and other proteases released by neutrophils during an inflammatory state. The lack of this inhibitor in human serum is responsible for the onset of alpha1-antitrypsin deficiency (AATD), which is a severe genetic disorder that affects lungs in adults and for which there is currently no cure. Being used, under special circumstances, as a medical treatment of AATD in the so-called "replacement" therapy (consisting in the intravenous infusion of the missing protein), AAT is a molecule with a lot of therapeutic importance. For this reason, interest in AAT purification from human plasma or its production in a recombinant version has grown considerably in recent years. This article retraces all technological advances that allowed the manufacturers to move from a few micrograms of partially purified AAT to several grams of highly purified protein. Moreover, the chronic augmentation and maintenance therapy in individuals with emphysema due to congenital AAT deficiency (current applications in the clinical setting) is also presented.Pathogenesis and treatment of chronic pulmonary disease

    Production of serine chymotrypsin - like elastase by aspergillus fumigatus strains

    Get PDF
    Thirty-four Aspergillus fumigatus strains isolated from air, horse-hair; agricultural soil and human samples were screened to evaluate the production of elastase. Aspergillus fumigatus strains were grown in elastin solid medium, showing a widespread elastin solubilization. However, isolates from human and agricultural soil samples were found to be the highest elastase producers. Then, eight out of 34 strains were grown in four different liquid media, on wich we investigated total and specific proteolytic activity. Results from this experiments suggest that the elastase production is induced by the presence of elastin as a substrate and that the elastase is a chymotrypsin like enzyme. Inhibitory profile showed that the A.fumigatus elastase is a serine proteinase

    The degree of acute descending control of spinal nociception in an area of primary hyperalgesia is dependent on the peripheral domain of afferent input

    Get PDF
    Descending controls of spinal nociceptive processing play a critical role in the development of inflammatory hyperalgesia. Acute peripheral nociceptor sensitization drives spinal sensitization and activates spino–supraspinal–spinal loops leading to descending inhibitory and facilitatory controls of spinal neuronal activity that further modify the extent and degree of the pain state. The afferent inputs from hairy and glabrous skin are distinct with respect to both the profile of primary afferent classes and the degree of their peripheral sensitization. It is not known whether these differences in afferent input differentially engage descending control systems to different extents or in different ways. Injection of complete Freund's adjuvant resulted in inflammation and swelling of hairy hind foot skin in rats, a transient thermal hyperalgesia lasting 72 h). In hairy skin, transient hyperalgesia was associated with sensitization of withdrawal reflexes to thermal activation of either A- or C-nociceptors. The transience of the hyperalgesia was attributable to a rapidly engaged descending inhibitory noradrenergic mechanism, which affected withdrawal responses to both A- and C-nociceptor activation and this could be reversed by intrathecal administration of yohimbine (α-2-adrenoceptor antagonist). In glabrous skin, yohimbine had no effect on an equivalent thermal inflammatory hyperalgesia. We conclude that acute inflammation and peripheral nociceptor sensitization in hind foot hairy skin, but not glabrous skin, rapidly activates a descending inhibitory noradrenergic system. This may result from differences in the engagement of descending control systems following sensitization of different primary afferent classes that innervate glabrous and hairy skin
    corecore