773 research outputs found
Praktische Statistik und Subjektivismus. EUR 2224. = Practical statistic and subjectivism. EUR 2224.
Eccentricities of Double Neutron Star Binaries
Recent pulsar surveys have increased the number of observed double neutron
stars (DNS) in our galaxy enough so that observable trends in their properties
are starting to emerge. In particular, it has been noted that the majority of
DNS have eccentricities less than 0.3, which are surprisingly low for binaries
that survive a supernova explosion that we believe imparts a significant kick
to the neutron star. To investigate this trend, we generate many different
theoretical distributions of DNS eccentricities using Monte Carlo population
synthesis methods. We determine which eccentricity distributions are most
consistent with the observed sample of DNS binaries. In agreement with
Chaurasia & Bailes (2005), assuming all double neutron stars are equally as
probable to be discovered as binary pulsars, we find that highly eccentric,
coalescing DNS are less likely to be observed because of their accelerated
orbital evolution due to gravitational wave emission and possible early
mergers. Based on our results for coalescing DNS, we also find that models with
vanishingly or moderately small kicks (sigma < about 50 km/s) are inconsistent
with the current observed sample of such DNS. We discuss the implications of
our conclusions for DNS merger rate estimates of interest to ground-based
gravitational-wave interferometers. We find that, although orbital evolution
due to gravitational radiation affects the eccentricity distribution of the
observed sample, the associated upwards correction factor to merger rate
estimates is rather small (typically 10-40%).Comment: 9 pages, 8 figures, accepted by ApJ. Figures reduced and some content
changed, references adde
Investigation of A1g phonons in YBa2Cu3O7 by means of LAPW atomic-force calculations
We report first-principles frozen-phonon calculations for the determination
of the force-free geometry and the dynamical matrix of the five Raman-active
A1g modes in YBa2Cu3O7. To establish the shape of the phonon potentials atomic
forces are calculated within the LAPW method. Two different schemes - the local
density approximation (LDA) and a generalized gradient approximation (GGA) -
are employed for the treatment of electronic exchange and correlation effects.
We find that in the case of LDA the resulting phonon frequencies show a
deviation from experimental values of approximately -10%. Invoking GGA the
frequency values are significantly improved and also the eigenvectors are in
very good agreement with experimental findings.Comment: 15 page
Calculations of the A_1 phonon frequency in photoexcited Tellurium
Calculations of the A_1 phonon frequency in photoexcited tellurium are
presented. The phonon frequency as a function of photoexcited carrier density
and phonon amplitude is determined. Recent pump probe experiments are
interpreted in the light of these calculatons. It is proposed that, in
conjunction with measurements of the phonon period in ultra-fast pump-probe
reflectivity experiments, the calculated frequency shifts can be used to infer
the evolution of the density of photoexcited carriers on a sub-picosecond
time-scale.Comment: 15 pages Latex, 3 postscript figure
Ab initio Pseudopotential Plane-wave Calculations of the Electronic Structure of YBa_2Cu_3O_7
We present an ab initio pseudopotential local density functional calculation
for stoichiometric high-Tc cuprate YBa_2Cu_3O_7 using the plane-wave basis set.
We have overcome well-known difficulties in applying pseudopotential methods to
first-row elements, transition metals, and rare-earth materials by carefully
generating norm-conserving pseudopotentials with excellent transferability and
employing an extremely efficient iterative diagonalization scheme optimized for
our purpose. The self-consistent band structures, the total and site-projected
densities of states, the partial charges and their symmetry-decompositions, and
some characteristic charge densities near E_f are presented. We compare our
results with various existing (F)LAPW and (F)LMTO calculations and establish
that the ab initio pseudopotential method is competitive with other methods in
studying the electronic structure of such complicated materials as high-Tc
cuprates. [8 postscript files in uuencoded compressed form]Comment: 14 pages, RevTeX v3.0, 8 figures (appended in postscript file), SNUTP
94-8
Formation, Manipulation, and Elasticity Measurement of a Nanometric Column of Water Molecules
Nanometer-sized columns of condensed water molecules are created by an
atomic-resolution force microscope operated in ambient conditions. Unusual
stepwise decrease of the force gradient associated with the thin water bridge
in the tip-substrate gap is observed during its stretch, exhibiting regularity
in step heights (~0.5 N/m) and plateau lengths (~1 nm). Such "quantized"
elasticity is indicative of the atomic-scale stick-slip at the tip-water
interface. A thermodynamic-instability-induced rupture of the water meniscus
(5-nm long and 2.6-nm wide) is also found. This work opens a high-resolution
study of the structure and the interface dynamics of a nanometric aqueous
column.Comment: 4 pages, 3 figure
Effect of Iodine Doping on BiSrCaCuO: Charge Transfer or Interlayer Coupling?
A comparative study has been made of iodine-intercalated
BiSrCaCuO single crystal and 1 atm O
annealed BiSrCaCuO single crystal using AC
susceptibility measurement, X-ray photoemission (XPS) and angle-resolved
ultraviolet photoemission spectroscopy (ARUPS). AC susceptibility measurement
indicates that O-doped samples studied have T of 84 K,
whereas T of Iodine-doped samples studied are 80 K. XPS Cu 2p core
level data establish that the hole concentration in the CuO planes are
essentially the same for these two kinds of samples. ARUPS measurements show
that electronic structure of the normal states near the Fermi level has been
strongly affected by iodine intercalation. We conclude that the dominant effect
of iodine doping is to alter the interlayer coupling.Comment: LBL 9 pages, APS_Revtex. 5 Figures, available upon request.
UW-Madison preprin
Effects of charge doping and constrained magnetization on the electronic structure of an FeSe monolayer
The electronic structural properties in the presence of constrained
magnetization and a charged background are studied for a monolayer of FeSe in
non-magnetic, checkerboard-, and striped-antiferromagnetic (AFM) spin
configurations. First principles techniques based on the pseudopotential
density functional approach and the local spin density approximation are
utilized. Our findings show that the experimentally observed shape of the Fermi
surface is best described by the checkerboard AFM spin pattern. To explore the
underlying pairing mechanism, we study the evolution of the non-magnetic to the
AFM-ordered structures under constrained magnetization. We estimate the
strength of electronic coupling to magnetic excitations involving an increase
in local moment and, separately, a partial moment transfer from one Fe atom to
another. We also show that the charge doping in the FeSe can lead to an
increase in the density of states at the Fermi level and possibly produce
higher superconducting transition temperatures
Searching for Gravitational Waves from the Inspiral of Precessing Binary Systems: Astrophysical Expectations and Detection Efficiency of "Spiky'' Templates
Relativistic spin-orbit and spin-spin couplings has been shown to modify the
gravitational waveforms expected from inspiraling binaries with a black hole
and a neutron star. As a result inspiral signals may be missed due to
significant losses in signal-to-noise ratio, if precession effects are ignored
in gravitational-wave searches. We examine the sensitivity of the anticipated
loss of signal-to-noise ratio on two factors: the accuracy of the precessing
waveforms adopted as the true signals and the expected distributions of
spin-orbit tilt angles, given the current understanding of their physical
origin. We find that the results obtained using signals generated by
approximate techniques are in good agreement with the ones obtained by
integrating the 2PN equations. This shows that a complete account of all
high-order post-Newtonian effects is usually not necessary for the
determination of detection efficiencies. Based on our current astrophysical
expectations, large tilt angles are not favored and as a result the decrease in
detection rate varies rather slowly with respect to the black hole spin
magnitude and is within 20--30% of the maximum possible values.Comment: 7 fig., accepted by Phys. Rev. D Minor modification
- …
