6,460 research outputs found
Transmission Pricing of Distributed Multilateral Energy Transactions to Ensure System Security and Guide Economic Dispatch
Self organized mode locking effect in superconductor / ferromagnet hybrids
The vortex dynamics in a low temperature superconductor deposited on top of a
rectangular array of micrometer size permalloy triangles is investigated
experimentally. The rectangular unit cell is such that neighboring triangles
physically touch each other along one direction. This design stabilizes
remanent states which differ from the magnetic vortex state typical of
individual non-interacting triangles. Magnetic Force Microscopy images have
revealed that the magnetic landscape of the template can be switched to an
ordered configuration after magnetizing the sample with an in-plane field. The
ordered phase exhibits a broad flux flow regime with relatively low critical
current and a highly anisotropic response. This behavior is caused by the
spontaneous formation of two separated rows of vortices and antivortices along
each line of connected triangles. The existence of a clear flux flow regime
even for zero external field supports this interpretation. The density of
induced vortex-antivortex pairs is directly obtained using a high frequency
measurement technique which allows us to resolve the discrete motion of
vortices. Strikingly, the presence of vortex-antivortex rows gives rise to a
self organized synchronized motion of vortices which manifests itself as field
independent Shapiro steps in the current-voltage characteristics.Comment: 9 pages, 11 figure
Evanescent field optical readout of graphene mechanical motion at room temperature
Graphene mechanical resonators have recently attracted considerable attention
for use in precision force and mass sensing applications. To date, readout of
their oscillatory motion has typically required cryogenic conditions to achieve
high sensitivity, restricting their range of applications. Here we report the
first demonstration of evanescent optical readout of graphene motion, using a
scheme which does not require cryogenic conditions and exhibits enhanced
sensitivity and bandwidth at room temperature. We utilise a high
microsphere to enable evanescent readout of a 70 m diameter graphene drum
resonator with a signal-to-noise ratio of greater than 25 dB, corresponding to
a transduction sensitivity of 2.6 m
. The sensitivity of force measurements using this
resonator is limited by the thermal noise driving the resonator, corresponding
to a force sensitivity of N
with a bandwidth of 35 kHz at room temperature (T = 300
K). Measurements on a 30 m graphene drum had sufficient sensitivity to
resolve the lowest three thermally driven mechanical resonances.Comment: Fixed formatting errors in bibliograph
Development and validation of the ACE tool: Assessing medical trainees' competency in evidence based medicine
BACKGROUND: While a variety of instruments have been developed to assess knowledge and skills in evidence based medicine (EBM), few assess all aspects of EBM - including knowledge, skills attitudes and behaviour - or have been psychometrically evaluated. The aim of this study was to develop and validate an instrument that evaluates medical trainees’ competency in EBM across knowledge, skills and attitude. METHODS: The ‘Assessing Competency in EBM’ (ACE) tool was developed by the authors, with content and face validity assessed by expert opinion. A cross-sectional sample of 342 medical trainees representing ‘novice’, ‘intermediate’ and ‘advanced’ EBM trainees were recruited to complete the ACE tool. Construct validity, item difficulty, internal reliability and item discrimination were analysed. RESULTS: We recruited 98 EBM-novice, 108 EBM-intermediate and 136 EBM-advanced participants. A statistically significant difference in the total ACE score was observed and corresponded to the level of training: on a 0-15-point test, the mean ACE scores were 8.6 for EBM-novice; 9.5 for EBM-intermediate; and 10.4 for EBM-advanced (p < 0.0001). Individual item discrimination was excellent (Item Discrimination Index ranging from 0.37 to 0.84), with internal reliability consistent across all but three items (Item Total Correlations were all positive ranging from 0.14 to 0.20). CONCLUSION: The 15-item ACE tool is a reliable and valid instrument to assess medical trainees’ competency in EBM. The ACE tool provides a novel assessment that measures user performance across the four main steps of EBM. To provide a complete suite of instruments to assess EBM competency across various patient scenarios, future refinement of the ACE instrument should include further scenarios across harm, diagnosis and prognosis
Domain wall displacement in Py square ring for single nanometric magnetic bead detection
A new approach based on the domain wall displacement in confined
ferromagnetic nanostructures for attracting and sensing a single nanometric
magnetic particles is presented. We modeled and experimentally demonstrated the
viability of the approach using an anisotropic magnetoresistance device made by
a micron-size square ring of Permalloy designed for application in magnetic
storage. This detection concept can be suitable to biomolecular recognition,
and in particular to single molecule detection.Comment: 8pages, 3figure
Surfaces containing a family of plane curves not forming a fibration
We complete the classification of smooth surfaces swept out by a
1-dimensional family of plane curves that do not form a fibration. As a
consequence, we characterize manifolds swept out by a 1-dimensional family of
hypersurfaces that do not form a fibration.Comment: Author's post-print, final version published online in Collect. Mat
A randomised controlled trial of a blended learning education intervention for teaching evidence-based medicine
Graphene-based photovoltaic cells for near-field thermal energy conversion
Thermophotovoltaic devices are energy-conversion systems generating an
electric current from the thermal photons radiated by a hot body. In far field,
the efficiency of these systems is limited by the thermodynamic
Schockley-Queisser limit corresponding to the case where the source is a black
body. On the other hand, in near field, the heat flux which can be transferred
to a photovoltaic cell can be several orders of magnitude larger because of the
contribution of evanescent photons. This is particularly true when the source
supports surface polaritons. Unfortunately, in the infrared where these systems
operate, the mismatch between the surface-mode frequency and the semiconductor
gap reduces drastically the potential of this technology. Here we show that
graphene-based hybrid photovoltaic cells can significantly enhance the
generated power paving the way to a promising technology for an intensive
production of electricity from waste heat.Comment: 5 pages, 4 figure
Geometry of lines and degeneracy loci of morphisms of vector bundles
Corrado Segre played a leading role in the foundation of line geometry. We
survey some recent results on degeneracy loci of morphisms of vector bundles
where he still is of profound inspiration.Comment: 10 pages. To appear in the proceedings of the conference "Homage to
Corrado Segre
- …
