79 research outputs found

    Ansatz from Non-Linear Optics Applied to Trapped Bose-Einstein Condensates

    Get PDF
    A simple analytical ansatz, which has been used to describe the intensity profile of the similariton laser (a laser with self-similar propagation of ultrashort pulses), is used as a variational wave function to solve the Gross-Pitaevskii equation for a wide range of interaction parameters. The variational form interpolates between the noninteracting density profile and the strongly interacting Thomas-Fermi profile smoothly. The simple form of the ansatz is modified for both cylindrically symmetric and completely anisotropic harmonic traps. The resulting ground-state density profile and energy are in very good agreement with both the analytical solutions in the limiting cases of interaction and the numerical solutions in the intermediate regime.Comment: 4 pages, 3 figures, published versio

    Pseudo Hermitian formulation of Black-Scholes equation

    Full text link
    We show that the non Hermitian Black-Scholes Hamiltonian and its various generalizations are eta-pseudo Hermitian. The metric operator eta is explicitly constructed for this class of Hamitonians. It is also shown that the effective Black-Scholes Hamiltonian and its partner form a pseudo supersymmetric system

    Variational study of a dilute Bose condensate in a harmonic trap

    Full text link
    A two-parameter trial condensate wave function is used to find an approximate variational solution to the Gross-Pitaevskii equation for N0N_0 condensed bosons in an isotropic harmonic trap with oscillator length d0d_0 and interacting through a repulsive two-body scattering length a>0a>0. The dimensionless parameter N0N0a/d0{\cal N}_0 \equiv N_0a/d_0 characterizes the effect of the interparticle interactions, with N01{\cal N}_0 \ll 1 for an ideal gas and N01{\cal N}_0 \gg 1 for a strongly interacting system (the Thomas-Fermi limit). The trial function interpolates smoothly between these two limits, and the three separate contributions (kinetic energy, trap potential energy, and two-body interaction energy) to the variational condensate energy and the condensate chemical potential are determined parametrically for any value of N0{\cal N}_0, along with illustrative numerical values. The straightforward generalization to an anisotropic harmonic trap is considered briefly.Comment: 14 pages, RevTeX, submitted to Journal of Low Temperature Physic

    Observation of a red-blue detuning asymmetry in matter-wave superradiance

    Full text link
    We report the first experimental observations of strong suppression of matter-wave superradiance using blue-detuned pump light and demonstrate a pump-laser detuning asymmetry in the collective atomic recoil motion. In contrast to all previous theoretical frameworks, which predict that the process should be symmetric with respect to the sign of the pump-laser detuning, we find that for condensates the symmetry is broken. With high condensate densities and red-detuned light, the familiar distinctive multi-order, matter-wave scattering pattern is clearly visible, whereas with blue-detuned light superradiance is strongly suppressed. In the limit of a dilute atomic gas, however, symmetry is restored.Comment: Accepted by Phys. Rev. Let

    An Imaging System for Focusing Tests of Li Multiprism X‐ray Refractive Lenses

    Get PDF
    For rapid and efficient tests of novel X‐rays optics, such as lithium‐based compound refractive lenses, we have built a fast X‐ray sensitive CCD imaging system. We report on the linearity, response and resolution of the microscope‐based imaging system. For the low magnifications used here (X2‐X10), we find that a thinly doped YAG screen has a poorer resolution than a thick YAG screen. We provide an example of its use in testing a new 2D focusing multiprism X‐ray lens. © 2004 American Institute of PhysicsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87661/2/780_1.pd

    X-ray microdiffraction studies of an integrated laser-modulator system

    Full text link
    The authors report the use of a spatially resolved x-ray microdiffraction technique for the structural study of an integrated laser-modulator system. The monochromatic (11 keV) x-ray beam microfocused to less than 1 {micro}m in the vertical direction was obtained using a phase zone plate. The photon flux at the focal spot exceeded 3 {times} 10{sup 10} photons/s/0.01% bw/{micro}m{sup 2}. The intense flux density and high spatial resolution of the focused beam was used to study the structure of a laser-modulator system, which is a 1-{micro}m-wide and 1-mm-long multi-quantum well structure on an InP substrate. The superlattice d-spacing and the strain field in the direction normal to the diffracting planes were mapped as a function of position along the length of the device
    corecore