670 research outputs found
Hydraulic flow through a channel contraction: multiple steady states
We have investigated shallow water flows through a channel with a contraction by experimental and theoretical means. The horizontal channel consists of a sluice gate and an upstream channel of constant width ending in a linear contraction of minimum width . Experimentally, we observe upstream steady and moving bores/shocks, and oblique waves in the contraction, as single and multiple steady states, as well as a steady reservoir with a complex hydraulic jump in the contraction occurring in a small section of the and Froude number parameter plane. One-dimensional hydraulic theory provides a comprehensive leading-order approximation, in which a turbulent frictional parametrization is used to achieve quantitative agreement. An analytical and numerical analysis is given for two-dimensional supercritical shallow water flows. It shows that the one-dimensional hydraulic analysis for inviscid flows away from hydraulic jumps holds surprisingly well, even though the two-dimensional oblique hydraulic jump patterns can show large variations across the contraction channel
Critical Behavior of Light
Light is shown to exhibit critical and tricritical behavior in passive
mode-locked lasers with externally injected pulses. It is a first and unique
example of critical phenomena in a one-dimensional many body light-mode system.
The phase diagrams consist of regimes with continuous wave, driven para-pulses,
spontaneous pulses via mode condensation, and heterogeneous pulses, separated
by phase transition lines which terminate with critical or tricritical points.
Enhanced nongaussian fluctuations and collective dynamics are observed at the
critical and tricritical points, showing a mode system analog of the critical
opalescence phenomenon. The critical exponents are calculated and shown to
comply with the mean field theory, which is rigorous in the light system.Comment: RevTex, 5 pages, 3 figure
Optics and Quantum Electronics
Contains reports on nine research projects split into two sections.National Science Foundation (Grant DAR80-08752)National Science Foundation (Grant ECS79-19475)Joint Services Electronics Program (Contract DAAG29-83-K-0003)National Science Foundation (Grant ECS80-20639)National Science Foundation (Grant ECS82-11650
Representation of the pulsed output from a mode-locked laser using quantum field theory and an application in multiphoton ionisation
Recommended from our members
Optical Clockwork without Carrier-Envelope Phase Control
We demonstrate optical clockwork without carrier-envelope phase control using sum-frequency generation between a cw optical parametric oscillator at 3.39 μm and a mode-locked Ti:sapphire laser with dominant spectral peaks at 834 nm and 670 nm
Optics and Quantum Electronics
Contains reports on eleven research projects.Joint Services Electronics Program (Contract DAAG29-83-K-0003)National Science Foundation (Grant ECS83-05448)National Science Foundation (Grant ECS83-10718)National Science Foundation (Grant ECS82-11650)National Science Foundation (Grant ECS84-06290)U.S. Air Force - Office of Scientific Research (Contract AFOSR-85-0213)National Institutes of Health (Grant 1 RO1 GM35459
Spectral Line-by-Line Pulse Shaping of an On-Chip Microresonator Frequency Comb
We report, for the first time to the best of our knowledge, spectral phase
characterization and line-by-line pulse shaping of an optical frequency comb
generated by nonlinear wave mixing in a microring resonator. Through
programmable pulse shaping the comb is compressed into a train of
near-transform-limited pulses of \approx 300 fs duration (intensity full width
half maximum) at 595 GHz repetition rate. An additional, simple example of
optical arbitrary waveform generation is presented. The ability to characterize
and then stably compress the frequency comb provides new data on the stability
of the spectral phase and suggests that random relative frequency shifts due to
uncorrelated variations of frequency dependent phase are at or below the 100
microHertz level.Comment: 18 pages, 4 figure
Recommended from our members
Experimental Implementation of Optical Clockwork without Carrier-Envelope Phase Control
We demonstrate an optical clockwork without camer-envelope phase control using sum-frequency generation between a CW optical parametric oscillator at 3.39 μm and a modelocked Tisapphire laser with dominant spectral peaks at 834 and 670 nm
- …
