318 research outputs found
The neural basis of video gaming
Video game playing is a frequent recreational activity. Previous studies have reported an involvement of dopamine-related ventral striatum. However, structural brain correlates of video game playing have not been investigated. On magnetic resonance imaging scans of 154 14-year-olds, we computed voxel-based morphometry to explore differences between frequent and infrequent video game players. Moreover, we assessed the Monetary Incentive Delay (MID) task during functional magnetic resonance imaging and the Cambridge Gambling Task (CGT). We found higher left striatal grey matter volume when comparing frequent against infrequent video game players that was negatively correlated with deliberation time in CGT. Within the same region, we found an activity difference in MID task: frequent compared with infrequent video game players showed enhanced activity during feedback of loss compared with no loss. This activity was likewise negatively correlated with deliberation time. The association of video game playing with higher left ventral striatum volume could reflect altered reward processing and represent adaptive neural plasticity. Translational Psychiatry (2011) 1, e53; doi: 10.1038/tp.2011.53; published online 15 November 2011</p
High (but Not Low) Urinary Iodine Excretion Is Predicted by Iodine Excretion Levels from Five Years Ago
Background: It has not been investigated whether there are associations between urinary iodine (UI) excretion measurements some years apart, nor whether such an association remains after adjustment for nutritional habits. The aim of the present study was to investigate the relation between iodine-creatinine ratio (ICR) at two measuring points 5 years apart. Methods: Data from 2,659 individuals from the Study of Health in Pomerania were analyzed. Analysis of covariance and Poisson regressions were used to associate baseline with follow-up ICR. Results: Baseline ICR was associated with follow-up ICR. Particularly, baseline ICR >300 mu g/g was related to an ICR >300 mu g/g at follow-up (relative risk, RR: 2.20; p < 0.001). The association was stronger in males (RR: 2.64; p < 0.001) than in females (RR: 1.64; p = 0.007). In contrast, baseline ICR <100 mu g/g was only associated with an ICR <100 mu g/g at follow-up in males when considering unadjusted ICR. Conclusions: We detected only a weak correlation with respect to low ICR. Studies assessing iodine status in a population should take into account that an individual with a low UI excretion in one measurement is not necessarily permanently iodine deficient. On the other hand, current high ICR could have been predicted by high ICR 5 years ago. Copyright (C) 2011 S. Karger AG, Base
Oppositional COMT Val158Met effects on resting state functional connectivity in adolescents and adults
© 2014, The Author(s).Prefrontal dopamine levels are relatively increased in adolescence compared to adulthood. Genetic variation of COMT (COMT Val158Met) results in lower enzymatic activity and higher dopamine availability in Met carriers. Given the dramatic changes of synaptic dopamine during adolescence, it has been suggested that effects of COMT Val158Met genotypes might have oppositional effects in adolescents and adults. The present study aims to identify such oppositional COMT Val158Met effects in adolescents and adults in prefrontal brain networks at rest. Resting state functional connectivity data were collected from cross-sectional and multicenter study sites involving 106 healthy young adults (mean age 24 ± 2.6 years), gender matched to 106 randomly chosen 14-year-olds. We selected the anterior medial prefrontal cortex (amPFC) as seed due to its important role as nexus of the executive control and default mode network. We observed a significant age-dependent reversal of COMT Val158Met effects on resting state functional connectivity between amPFC and ventrolateral as well as dorsolateral prefrontal cortex, and parahippocampal gyrus. Val homozygous adults exhibited increased and adolescents decreased connectivity compared to Met homozygotes for all reported regions. Network analyses underscored the importance of the parahippocampal gyrus as mediator of observed effects. Results of this study demonstrate that adolescent and adult resting state networks are dose-dependently and diametrically affected by COMT genotypes following a hypothetical model of dopamine function that follows an inverted U-shaped curve. This study might provide cues for the understanding of disease onset or dopaminergic treatment mechanisms in major neuropsychiatric disorders such as schizophrenia and attention deficit hyperactivity disorder
Evidence of amygdala hypersensitivity to signals of threat
Cannabis use in adolescence may be characterized by differences in the neural
basis of affective processing. In this study, we used an fMRI affective face
processing task to compare a large group (n = 70) of 14-year olds with a
history of cannabis use to a group (n = 70) of never-using controls matched on
numerous characteristics including IQ, SES, alcohol and cigarette use. The
task contained short movies displaying angry and neutral faces. Results
indicated that cannabis users had greater reactivity in the bilateral
amygdalae to angry faces than neutral faces, an effect that was not observed
in their abstinent peers. In contrast, activity levels in the cannabis users
in cortical areas including the right temporal-parietal junction and bilateral
dorsolateral prefrontal cortex did not discriminate between the two face
conditions, but did differ in controls. Results did not change after excluding
subjects with any psychiatric symptomology. Given the high density of
cannabinoid receptors in the amygdala, our findings suggest cannabis use in
early adolescence is associated with hypersensitivity to signals of threat.
Hypersensitivity to negative affect in adolescence may place the subject at-
risk for mood disorders in adulthood
Incomplete Hippocampal Inversion: A Comprehensive MRI Study of Over 2000 Subjects
International audienceThe incomplete-hippocampal-inversion (IHI), also known as malrotation, is an atypical anatomical pattern of the hippocampus, which has been reported in healthy subjects in different studies. However, extensive characterization of IHI in a large sample has not yet been performed. Furthermore, it is unclear whether IHI are restricted to the medial-temporal lobe or are associated with more extensive anatomical changes. Here, we studied the characteristics of IHI in a community-based sample of 2008 subjects of the IMAGEN database and their association with extra-hippocampal anatomical variations. The presence of IHI was assessed on T1-weighted anatomical magnetic resonance imaging (MRI) using visual criteria. We assessed the association of IHI with other anatomical changes throughout the brain using automatic morphometry of cortical sulci. We found that IHI were much more frequent in the left hippocampus (left: 17%, right: 6%, χ2−test, p < 10−28). Compared to subjects without IHI, subjects with IHI displayed morphological changes in several sulci located mainly in the limbic lobe. Our results demonstrate that IHI are a common left-sided phenomenon in normal subjects and that they are associated with morphological changes outside the medial temporal lobe
A Comprehensive MRI Study of Over 2000 Subjects
The incomplete-hippocampal-inversion (IHI), also known as malrotation, is an
atypical anatomical pattern of the hippocampus, which has been reported in
healthy subjects in different studies. However, extensive characterization of
IHI in a large sample has not yet been performed. Furthermore, it is unclear
whether IHI are restricted to the medial-temporal lobe or are associated with
more extensive anatomical changes. Here, we studied the characteristics of IHI
in a community-based sample of 2008 subjects of the IMAGEN database and their
association with extra-hippocampal anatomical variations. The presence of IHI
was assessed on T1-weighted anatomical magnetic resonance imaging (MRI) using
visual criteria. We assessed the association of IHI with other anatomical
changes throughout the brain using automatic morphometry of cortical sulci. We
found that IHI were much more frequent in the left hippocampus (left: 17%,
right: 6%, χ2−test, p < 10−28). Compared to subjects without IHI, subjects
with IHI displayed morphological changes in several sulci located mainly in
the limbic lobe. Our results demonstrate that IHI are a common left-sided
phenomenon in normal subjects and that they are associated with morphological
changes outside the medial temporal lobe
A medical device-grade T1 and ECV phantom for global T1 mapping quality assurance - the T Mapping and ECV Standardization in cardiovascular magnetic resonance (T1MES) program
T mapping and extracellular volume (ECV) have the potential to guide patient care and serve as surrogate end-points in clinical trials, but measurements differ between cardiovascular magnetic resonance (CMR) scanners and pulse sequences. To help deliver T mapping to global clinical care, we developed a phantom-based quality assurance (QA) system for verification of measurement stability over time at individual sites, with further aims of generalization of results across sites, vendor systems, software versions and imaging sequences. We thus created T1MES: The T1 Mapping and ECV Standardization Program.
A design collaboration consisting of a specialist MRI small-medium enterprise, clinicians, physicists and national metrology institutes was formed. A phantom was designed covering clinically relevant ranges of T and T in blood and myocardium, pre and post-contrast, for 1.5 T and 3 T. Reproducible mass manufacture was established. The device received regulatory clearance by the Food and Drug Administration (FDA) and Conformité Européene (CE) marking.
The T1MES phantom is an agarose gel-based phantom using nickel chloride as the paramagnetic relaxation modifier. It was reproducibly specified and mass-produced with a rigorously repeatable process. Each phantom contains nine differently-doped agarose gel tubes embedded in a gel/beads matrix. Phantoms were free of air bubbles and susceptibility artifacts at both field strengths and T maps were free from off-resonance artifacts. The incorporation of high-density polyethylene beads in the main gel fill was effective at flattening the field. T and T values measured in T1MES showed coefficients of variation of 1 % or less between repeat scans indicating good short-term reproducibility. Temperature dependency experiments confirmed that over the range 15-30 °C the short-T tubes were more stable with temperature than the long-T tubes. A batch of 69 phantoms was mass-produced with random sampling of ten of these showing coefficients of variations for T of 0.64 ± 0.45 % and 0.49 ± 0.34 % at 1.5 T and 3 T respectively.
The T1MES program has developed a T mapping phantom to CE/FDA manufacturing standards. An initial 69 phantoms with a multi-vendor user manual are now being scanned fortnightly in centers worldwide. Future results will explore T mapping sequences, platform performance, stability and the potential for standardization.This project has been funded by a European Association of Cardiovascular Imaging (EACVI part of the ESC) Imaging Research Grant, a UK National Institute of Health Research (NIHR) Biomedical Research Center (BRC) Cardiometabolic Research Grant at University College London (UCL, #BRC/ 199/JM/101320), and a Barts Charity Research Grant (#1107/2356/MRC0140). G.C. is supported by the National Institute for Health Research Rare Diseases Translational Research Collaboration (NIHR RD-TRC) and by the NIHR UCL Hospitals Biomedical Research Center. J.C.M. is directly and indirectly supported by the UCL Hospitals NIHR BRC and Biomedical Research Unit at Barts Hospital respectively. This work was in part supported by an NIHR BRC award to Cambridge University Hospitals NHS Foundation Trust and NIHR Cardiovascular Biomedical Research Unit support at Royal Brompton Hospital London UK
Reliability and accuracy of straightforward measurements for liver volume determination in ultrasound and computed tomography compared to real volumetry
To evaluate the suitability of volume index measurement (VI) by either ultrasound (US) or computed tomography (CT) for the assessment of liver volume. Fifty-nine patients, 21 women, with a mean age of 66.8 ± 12.6 years underwent US of the liver followed immediately by abdominal CT. In US and CT imaging dorsoventral, mediolateral and craniocaudal liver diameters in their maximum extensions were assessed by two observers. VI was calculated by multiplication of the diameters divided by a constant (3.6). The liver volume determined by a manual segmentation in CT (“true liver volume”) served as gold standard. True liver volume and calculated VI determined by US and CT were compared using Bland–Altman analysis. Mean differences of VI between observers were − 34.7% (− 90.1%; 20.7%) for the US-based and 1.1% (− 16.1%; 18.2%) for the CT-based technique, respectively. Liver volumes determined by semi-automated segmentation, US-based VI and CT-based VI, were as follows: 1.500 ± 347cm3; 863 ± 371cm3; 1.509 ± 432cm3. Results showed a great discrepancy between US-based VI and true liver volume with a mean bias of 58.3 ± 66.9%, and high agreement between CT-based VI and true liver volume with a low mean difference of 4.4 ± 28.3%. Volume index based on CT diameters is a reliable, fast and simple approach for estimating liver volume and can therefore be recommended for clinical practice. The usage of US-based volume index for assessment of liver volume should not be used due to its low accuracy of US in measurement of liver diameters
A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape
This is the final version of the article. Available from the publisher via the DOI in this record.Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways
Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex
The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders
- …
