6,238 research outputs found
Corporate Financing in Great Britain
Background: The antifungal compound ketoconazole has, in addition to its ability to interfere with fungal ergosterol synthesis, effects upon other enzymes including human CYP3A4, CYP17, lipoxygenase and thromboxane synthetase. In the present study, we have investigated whether ketoconazole affects the cellular uptake and hydrolysis of the endogenous cannabinoid receptor ligand anandamide (AEA). Methodology/Principal Findings: The effects of ketoconazole upon endocannabinoid uptake were investigated using HepG2, CaCo2, PC-3 and C6 cell lines. Fatty acid amide hydrolase (FAAH) activity was measured in HepG2 cell lysates and in intact C6 cells. Ketoconazole inhibited the uptake of AEA by HepG2 cells and CaCo2 cells with IC50 values of 17 and 18 mu M, respectively. In contrast, it had modest effects upon AEA uptake in PC-3 cells, which have a low expression of FAAH. In cell-free HepG2 lysates, ketoconazole inhibited FAAH activity with an IC50 value (for the inhibitable component) of 34 mu M. Conclusions/Significance: The present study indicates that ketoconazole can inhibit the cellular uptake of AEA at pharmacologically relevant concentrations, primarily due to its effects upon FAAH. Ketoconazole may be useful as a template for the design of dual-action FAAH/CYP17 inhibitors as a novel strategy for the treatment of prostate cancer
Implementation of Provably Stable MaxNet
MaxNet TCP is a congestion control protocol that uses explicit multi-bit signalling from routers to achieve desirable properties such as high throughput and low latency. In this paper we present an implementation of an extended version of MaxNet. Our contributions are threefold. First, we extend the original algorithm to give both provable stability and rate fairness. Second, we introduce the MaxStart algorithm which allows new MaxNet connections to reach their fair rates quickly. Third, we provide a Linux kernel implementation of the protocol. With no overhead but 24-bit price signals, our implementation scales from 32 bit/s to 1 peta-bit/s with a 0.001% rate accuracy. We confirm the theoretically predicted properties by performing a range of experiments at speeds up to 1 Gbit/sec and delays up to 180 ms on the WAN-in-Lab facility
The effects of matter density uncertainties on neutrino oscillations in the Earth
We compare three different methods to evaluate uncertainties in the Earth's
matter density profile, which are relevant to long baseline experiments, such
as neutrino factories.Comment: 3 pages, 1 figure. Talk given at the NuFact'02 Workshop, London, 1-6
July, 200
Resource Management in Diffserv On DemAnd (RODA) PHR
The purpose of this draft is to present the Resource Management in Diffserv (RMD) On DemAnd (RODA) Per Hop Reservation (PHR) protocol. The RODA PHR protocol is used on a per-hop basis in a Differentiated Services (Diffserv) domain and extends the Diffserv Per Hop Behavior (PHB) with resource provisioning and control
The role of matter density uncertainties in the analysis of future neutrino factory experiments
Matter density uncertainties can affect the measurements of the neutrino
oscillation parameters at future neutrino factory experiments, such as the
measurements of the mixing parameters and \deltacp. We compare
different matter density uncertainty models and discuss the possibility to
include the matter density uncertainties in a complete statistical analysis.
Furthermore, we systematically study in which measurements and where in the
parameter space matter density uncertainties are most relevant. We illustrate
this discussion with examples that show the effects as functions of different
magnitudes of the matter density uncertainties. We find that matter density
uncertainties are especially relevant for large \stheta \gtrsim 10^{-3}.
Within the KamLAND-allowed range, they are most relevant for the precision
measurements of \stheta and \deltacp, but less relevant for ``binary''
measurements, such as for the sign of \ldm, the sensitivity to \stheta, or
the sensitivity to maximal CP violation. In addition, we demonstrate that
knowing the matter density along a specific baseline better than to about 1%
precision means that all measurements will become almost independent of the
matter density uncertainties.Comment: 21 pages, 7 figures, LaTeX. Final version to be published in Phys.
Rev.
Resource Management in Diffserv (RMD) Framework
This draft presents the work on the framework for the Resource Management in Diffserv (RMD) designed for edge-to-edge resource reservation in a Differentiated Services (Diffserv) domain. The RMD extends the Diffserv architecture with new resource reservation concepts and features. Moreover, this framework enhances the Load Control protocol described in [WeTu00].\ud
\ud
The RMD framework defines two architectural concepts:\ud
- the Per Hop Reservation (PHR)\ud
- the Per Domain Reservation (PDR)\ud
\ud
The PHR protocol is used within a Diffserv domain on a per-hop basis to augment the Diffserv Per Hop Behavior (PHB) with resource reservation. It is implemented in all nodes in a Diffserv domain. On the other hand, the PDR protocol manages the resource reservation per Diffserv domain, relying on the PHR resource reservation status in all nodes. The PDR is only implemented at the boundary of the domain (at the edge nodes).\ud
\ud
The RMD framework presented in this draft describes the new reservation concepts and features. Furthermore it describes the:\ud
- relationship between the PHR and PHB\ud
- interaction between the PDR and PHR\ud
- interoperability between the PDR and external resource reservation schemes\ud
\ud
This framework is an open framework in the sense that it provides the basis for interoperability with other resource reservation schemes and can be applied in different types of networks as long as they are Diffserv domains. It aims at extreme simplicity and low cost of implementation along with good scaling properties
Synergies between the first-generation JHF-SK and NuMI superbeam experiments
We discuss synergies in the combination of the first-generation JHF to
Super-Kamiokande and NuMI off-axis superbeam experiments. With synergies we
mean effects which go beyond simply adding the statistics of the two
experiments. As a first important result, we do not observe interesting synergy
effects in the combination of the two experiments as they are planned right
now. However, we find that with minor modifications, such as a different NuMI
baseline or a partial antineutrino running, one could do much richer physics
with both experiments combined. Specifically, we demonstrate that one could,
depending on the value of the solar mass squared difference, either measure the
sign of the atmospheric mass squared difference or CP violation already with
the initial stage experiments. Our main results are presented in a way that can
be easily interpreted in terms of the forthcoming KamLAND result.Comment: 29 pages, 10 figure
Neutrino tomography - Learning about the Earth's interior using the propagation of neutrinos
Because the propagation of neutrinos is affected by the presence of Earth
matter, it opens new possibilities to probe the Earth's interior. Different
approaches range from techniques based upon the interaction of high energy
(above TeV) neutrinos with Earth matter, to methods using the MSW effect on the
neutrino oscillations of low energy (MeV to GeV) neutrinos. In principle,
neutrinos from many different sources (sun, atmosphere, supernovae, beams etc.)
can be used. In this talk, we summarize and compare different approaches with
an emphasis on more recent developments. In addition, we point out other
geophysical aspects relevant for neutrino oscillations.Comment: 22 pages, 9 figures. Proceedings of ``Neutrino sciences 2005:
Neutrino geophysics'', December 14-16, 2005, Honolulu, USA. Minor changes,
some references added. Final version to appear in Earth, Moon, and Planet
- …
