482 research outputs found

    Neutral Theory and Relative Species Abundance in Ecology

    Full text link
    The theory of island biogeography[1] asserts that an island or a local community approaches an equilibrium species richness as a result of the interplay between the immigration of species from the much larger metacommunity source area and local extinction of species on the island (local community). Hubbell[2] generalized this neutral theory to explore the expected steady-state distribution of relative species abundance (RSA) in the local community under restricted immigration. Here we present a theoretical framework for the unified neutral theory of biodiversity[2] and an analytical solution for the distribution of the RSA both in the metacommunity (Fisher's logseries) and in the local community, where there are fewer rare species. Rare species are more extinction-prone, and once they go locally extinct, they take longer to re-immigrate than do common species. Contrary to recent assertions[3], we show that the analytical solution provides a better fit, with fewer free parameters, to the RSA distribution of tree species on Barro Colorado Island (BCI)[4] than the lognormal distribution[5,6].Comment: 19 pages, 1 figur

    Jumping the energetics queue: Modulation of pulsar signals by extraterrestrial civilizations

    Full text link
    It has been speculated that technological civilizations evolve along an energy consumption scale first formulated by Kardashev, ranging from human-like civilizations that consume energy at a rate of 1019\sim 10^{19} erg s1^{-1} to hypothetical highly advanced civilizations that can consume 1044\sim 10^{44} erg s1^{-1}. Since the transmission power of a beacon a civilization can build depends on the energy it possesses, to make it bright enough to be seen across the Galaxy would require high technological advancement. In this paper, we discuss the possibility of a civilization using naturally-occurring radio transmitters -- specifically, radio pulsars -- to overcome the Kardashev limit of their developmental stage and transmit super-Kardashev power. This is achieved by the use of a modulator situated around a pulsar, that modulates the pulsar signal, encoding information onto its natural emission. We discuss a simple modulation model using pulse nulling and considerations for detecting such a signal. We find that a pulsar with a nulling modulator will exhibit an excess of thermal emission peaking in the ultraviolet during its null phases, revealing the existence of a modulator.Comment: 6 pages, 2 figures, Published in New Astronom

    Proteins and polymers

    Full text link
    Proteins, chain molecules of amino acids, behave in ways which are similar to each other yet quite distinct from standard compact polymers. We demonstrate that the Flory theorem, derived for polymer melts, holds for compact protein native state structures and is not incompatible with the existence of structured building blocks such as α\alpha-helices and β\beta-strands. We present a discussion on how the notion of the thickness of a polymer chain, besides being useful in describing a chain molecule in the continuum limit, plays a vital role in interpolating between conventional polymer physics and the phase of matter associated with protein structures.Comment: 7 pages, 6 figure

    Nanoscale fluid flows in the vicinity of patterned surfaces

    Full text link
    Molecular dynamics simulations of dense and rarefied fluids comprising small chain molecules in chemically patterned nano-channels predict a novel switching from Poiseuille to plug flow along the channel. We also demonstrate behavior akin to the lotus effect for a nanodrop on a chemically patterned substrate. Our results show that one can control and exploit the behavior of fluids at the nanoscale using chemical patterning.Comment: Phys. Rev. Lett. in pres

    Spatial Scaling in Model Plant Communities

    Full text link
    We present an analytically tractable variant of the voter model that provides a quantitatively accurate description of beta-diversity (two-point correlation function) in two tropical forests. The model exhibits novel scaling behavior that leads to links between ecological measures such as relative species abundance and the species area relationship.Comment: 10 pages, 3 figure

    Diffusion, peer pressure and tailed distributions

    Full text link
    We present a general, physically motivated non-linear and non-local advection equation in which the diffusion of interacting random walkers competes with a local drift arising from a kind of peer pressure. We show, using a mapping to an integrable dynamical system, that on varying a parameter, the steady state behaviour undergoes a transition from the standard diffusive behavior to a localized stationary state characterized by a tailed distribution. Finally, we show that recent empirical laws on economic growth can be explained as a collective phenomenon due to peer pressure interaction.Comment: RevTex: 4 pages + 3 eps-figures. Minor Revision and figure 3 replaced. To appear in Phys. Rev. Letter

    Continuum Model for River Networks

    Full text link
    The effects of erosion, avalanching and random precipitation are captured in a simple stochastic partial differential equation for modelling the evolution of river networks. Our model leads to a self-organized structured landscape and to abstraction and piracy of the smaller tributaries as the evolution proceeds. An algebraic distribution of the average basin areas and a power law relationship between the drainage basin area and the river length are found.Comment: 9 pages, Revtex 3.0, 7 figures in compressed format using uufiles command, to appear in Phys. Rev. Lett., for an hard copy or problems e-mail to [email protected]

    Folding, Design and Determination of Interaction Potentials Using Off-Lattice Dynamics of Model Heteropolymers

    Full text link
    We present the results of a self-consistent, unified molecular dynamics study of simple model heteropolymers in the continuum with emphasis on folding, sequence design and the determination of the interaction parameters of the effective potential between the amino acids from the knowledge of the native states of the designed sequences.Comment: 8 pages, 3 Postscript figures, uses RevTeX. Submitted to Physical Review Letter

    Network Structures from Selection Principles

    Full text link
    We present an analysis of the topologies of a class of networks which are optimal in terms of the requirements of having as short a route as possible between any two nodes while yet keeping the congestion in the network as low as possible. Strikingly, we find a variety of distinct topologies and novel phase transitions between them on varying the number of links per node. Our results suggest that the emergence of the topologies observed in nature may arise both from growth mechanisms and the interplay of dynamical mechanisms with a selection process.Comment: 4 pages, 5 figure
    corecore