1,779 research outputs found
The dynamics of cryosorption pumping
Dynamics of cryosorption pumping of air, argon, and hydrogen by activated charcoa
Retrodiction as a tool for micromaser field measurements
We use retrodictive quantum theory to describe cavity field measurements by
successive atomic detections in the micromaser. We calculate the state of the
micromaser cavity field prior to detection of sequences of atoms in either the
excited or ground state, for atoms that are initially prepared in the excited
state. This provides the POM elements, which describe such sequences of
measurements.Comment: 20 pages, 4(8) figure
Red Optical Planet Survey : A radial velocity search for low mass M dwarf planets
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedWe present radial velocity results from our Red Optical Planet Survey (ROPS), aimed at detecting low-mass planets orbiting mid-late M dwarfs. The similar to 10 ms(-1) precision achieved over 2 consecutive nights with the MIKE spectrograph at Magellan Clay is also found on week long timescales with UVES at VLT. Since we find that UVES is expected to attain photon limited precision of order 2 ms-1 using our novel deconvolution technique, we are limited only by the
The relation between stellar magnetic field geometry and chromospheric activity cycles - I. The highly variable field of ɛ Eridani at activity minimum
The young and magnetically active K dwarf Epsilon Eridani exhibits a chromospheric activity cycle of about 3 years. Previous reconstructions of its large-scale magnetic field show strong variations at yearly epochs. To understand how Epsilon Eridani's large-scale magnetic field geometry evolves over its activity cycle we focus on high cadence observations spanning 5 months at its activity minimum. Over this timespan we reconstruct 3 maps of Epsilon Eridani's large-scale magnetic field using the tomographic technique of Zeeman Doppler Imaging. The results show that at the minimum of its cycle, Epsilon Eridani's large-scale field is more complex than the simple dipolar structure of the Sun and 61 Cyg A at minimum. Additionally we observe a surprisingly rapid regeneration of a strong axisymmetric toroidal field as Epsilon Eridani emerges from its S-index activity minimum. Our results show that all stars do not exhibit the same field geometry as the Sun and this will be an important constraint for the dynamo models of active solar-type stars
Spectroscopic characterisation of CARMENES target candidates from FEROS, CAFE and HRS high-resolution spectra
CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with
Near-infrared and optical Echelle Spectrographs) started a new planet survey on
M-dwarfs in January this year. The new high-resolution spectrographs are
operating in the visible and near-infrared at Calar Alto Observatory. They will
perform high-accuracy radial-velocity measurements (goal 1 m s-1) of about 300
M-dwarfs with the aim to detect low-mass planets within habitable zones. We
characterised the candidate sample for CARMENES and provide fundamental
parameters for these stars in order to constrain planetary properties and
understand star-planet systems. Using state-of-the-art model atmospheres
(PHOENIX-ACES) and chi2-minimization with a downhill-simplex method we
determine effective temperature, surface gravity and metallicity [Fe/H] for
high-resolution spectra of around 480 stars of spectral types M0.0-6.5V taken
with FEROS, CAFE and HRS. We find good agreement between the models and our
observed high-resolution spectra. We show the performance of the algorithm, as
well as results, parameter and spectral type distributions for the CARMENES
candidate sample, which is used to define the CARMENES target sample. We also
present first preliminary results obtained from CARMENES spectra
The relation between stellar magnetic field geometry and chromospheric activity cycles – II The rapid 120-day magnetic cycle of <i>τ</i> Bootis
One of the aims of the BCool programme is to search for cycles in other stars and to understand how similar they are to the Sun. In this paper, we aim to monitor the evolution of τ Boo’s large-scale magnetic field using high-cadence observations covering its chromospheric activity maximum. For the first time, we detect a polarity switch that is in phase with τ Boo’s 120-day chromospheric activity maximum and its inferred X-ray activity cycle maximum. This means that τ Boo has a very fast magnetic cycle of only 240 days. At activity maximum τ Boo’s large-scale field geometry is very similar to the Sun at activity maximum: it is complex and there is a weak dipolar component. In contrast, we also see the emergence of a strong toroidal component which has not been observed on the Sun, and a potentially overlapping butterfly pattern where the next cycle begins before the previous one has finished
- …
