25,700 research outputs found
Three-body spin-orbit forces from chiral two-pion exchange
Using chiral perturbation theory, we calculate the density-dependent
spin-orbit coupling generated by the two-pion exchange three-nucleon
interaction involving virtual -isobar excitation. From the
corresponding three-loop Hartree and Fock diagrams we obtain an isoscalar
spin-orbit strength which amounts at nuclear matter
saturation density to about half of the empirical value of MeVfm. The
associated isovector spin-orbit strength comes out about a
factor of 20 smaller. Interestingly, this three-body spin-orbit coupling is not
a relativistic effect but independent of the nucleon mass . Furthermore, we
calculate the three-body spin-orbit coupling generated by two-pion exchange on
the basis of the most general chiral -contact interaction. We find
similar (numerical) results for the isoscalar and isovector spin-orbit
strengths and with a strong dominance of
the p-wave part of the -contact interaction and the Hartree
contribution.Comment: 8 pages, 4figure, published in : Physical Review C68, 054001 (2003
Chiral pion-nucleon dynamics in finite nuclei: spin-isospin excitations
The nuclear density functional framework, based on chiral dynamics and the
symmetry breaking pattern of low-energy QCD, is extended to the description of
collective nuclear excitations. Starting from the relativistic point-coupling
Lagrangian previously introduced [Nucl. Phys. A770 (2006) 1], the
proton-neutron (quasiparticle) random phase approximation is formulated and
applied to investigate the role of chiral pion-nucleon dynamics in excitation
modes involving spin and isospin degrees of freedom, e.g. isobaric analog
states and Gamow-Teller resonances.Comment: 17 pages, 6 figures, elsart class. Minor revisions, Nuclear Physics A
in prin
Production and characterisation of monoclonal antibodies specific for chicken interleukin-2
Using genetic immunisation of mice, we produced antibodies against chicken interleukin-2 (ChIL-2), the first produced against a non-mammalian interleukin. After a final injection with a recombinant ChIL-2 protein, two stable hybridoma cell lines were established which secreted monoclonal antibodies (MAbs) against this cytokine. Specific binding of the two MAbs to recombinant ChIL-2 produced by Escherichia coli and COS-7 cells was demonstrated in an indirect ELISA, Western blotting and dot blots. Both of them were able to neutralise the biological activity of the ChIL-2, but neither allowed the detection of ChIL-2 by flow cytometry
In-medium chiral SU(3) dynamics and hypernuclear structure
A previously introduced relativistic energy density functional, successfully
applied to ordinary nuclei, is extended to hypernuclei. The density-dependent
mean field and the spin-orbit potential are consistently calculated for a
hyperon in the nucleus using the SU(3) extension of in-medium chiral
perturbation theory. The leading long range interaction arises from
kaon-exchange and -exchange with hyperon in the intermediate
state. Scalar and vector mean fields reflecting in-medium changes of the quark
condensates are constrained by QCD sum rules. The model, applied to oxygen as a
test case, describes spectroscopic data in good agreement with experiment. In
particular, the smallness of the spin-orbit interaction finds a
natural explanation in terms of an almost complete cancellation between
scalar-vector background contributions and long-range terms generated by
two-pion exchange.Comment: 10 pages, 2 figures, elsart class. Minor revision
Scattering of terrestrial kilometric radiation at very high altitudes
On a number of occasions during the 3.8 yr. operating lifetime of RAE-2, strong terrestrial kilometric radiation was observed when the spacecraft was over the far side of the moon and when the low altitude terrestrial magnetosphere was completely obscured from view. If these deep lunar occultation events are used to infer radio source locations, then it is found that the apparent source must sometimes be situated at geocentric distances of 10 to 40 sub E or more. From an analysis of these events, it is shown that they are probably due to propagation effects rather than the actual generation of the emission at such large distances. The kilometric radiation can be generated near the earth at auroral latitudes and subsequently strongly scattered in the magnetosheath and nearby solar wind to produce the large apparent distances. The most likely scatterers are density inhomogeneities in the magnetosheath plasma and ion plasma waves in the magnetosheath and the upstream solar wind
Nuclear energy density functional from chiral pion-nucleon dynamics: Isovector terms
We extend a recent calculation of the nuclear energy density functional in
the framework of chiral perturbation theory by computing the isovector surface
and spin-orbit terms: (\vec \nabla \rho_p- \vec \nabla \rho_n)^2 G_d(\rho)+
(\vec \nabla \rho_p- \vec \nabla \rho_n)\cdot(\vec J_p-\vec J_n)
G_{so(\rho)+(\vec J_p-\vec J_n)^2 G_J(\rho) pertaining to different proton and
neutron densities. Our calculation treats systematically the effects from
-exchange, iterated -exchange, and irreducible -exchange with
intermediate -isobar excitations, including Pauli-blocking corrections
up to three-loop order. Using an improved density-matrix expansion, we obtain
results for the strength functions , and
which are considerably larger than those of phenomenological Skyrme forces.
These (parameter-free) predictions for the strength of the isovector surface
and spin-orbit terms as provided by the long-range pion-exchange dynamics in
the nuclear medium should be examined in nuclear structure calculations at
large neutron excess.Comment: 12 pages, 5 figure
Nuclear energy density functional from chiral pion-nucleon dynamics: Isovector spin-orbit terms
We extend a recent calculation of the nuclear energy density functional in
the systematic framework of chiral perturbation theory by computing the
isovector spin-orbit terms: . The calculation
includes the one-pion exchange Fock diagram and the iterated one-pion exchange
Hartree and Fock diagrams. From these few leading order contributions in the
small momentum expansion one obtains already a good equation of state of
isospin-symmetric nuclear matter. We find that the parameterfree results for
the (density-dependent) strength functions and agree
fairly well with that of phenomenological Skyrme forces for densities . At very low densities a strong variation of the strength functions
and with density sets in. This has to do with chiral
singularities and the presence of two competing small mass scales
and . The novel density dependencies of and
as predicted by our parameterfree (leading order) calculation should
be examined in nuclear structure calculations.Comment: 9 pages, 3 figure, published in: Physical Review C68, 014323 (2003
- …
