3,710 research outputs found

    Randomly Charged Polymers, Random Walks, and Their Extremal Properties

    Full text link
    Motivated by an investigation of ground state properties of randomly charged polymers, we discuss the size distribution of the largest Q-segments (segments with total charge Q) in such N-mers. Upon mapping the charge sequence to one--dimensional random walks (RWs), this corresponds to finding the probability for the largest segment with total displacement Q in an N-step RW to have length L. Using analytical, exact enumeration, and Monte Carlo methods, we reveal the complex structure of the probability distribution in the large N limit. In particular, the size of the longest neutral segment has a distribution with a square-root singularity at l=L/N=1, an essential singularity at l=0, and a discontinuous derivative at l=1/2. The behavior near l=1 is related to a another interesting RW problem which we call the "staircase problem". We also discuss the generalized problem for d-dimensional RWs.Comment: 33 pages, 19 Postscript figures, RevTe

    Collapse of Randomly Self-Interacting Polymers

    Full text link
    We use complete enumeration and Monte Carlo techniques to study self--avoiding walks with random nearest--neighbor interactions described by v0qiqjv_0q_iq_j, where qi=±1q_i=\pm1 is a quenched sequence of ``charges'' on the chain. For equal numbers of positive and negative charges (N+=NN_+=N_-), the polymer with v0>0v_0>0 undergoes a transition from self--avoiding behavior to a compact state at a temperature θ1.2v0\theta\approx1.2v_0. The collapse temperature θ(x)\theta(x) decreases with the asymmetry x=N+N/(N++N)x=|N_+-N_-|/(N_++N_-)Comment: 8 pages, TeX, 4 uuencoded postscript figures, MIT-CMT-

    Physics input for modelling superfluid neutron stars with hyperon cores

    Full text link
    Observations of massive (M2.0 MM \approx 2.0~M_\odot) neutron stars (NSs), PSRs J1614-2230 and J0348+0432, rule out most of the models of nucleon-hyperon matter employed in NS simulations. Here we construct three possible models of nucleon-hyperon matter consistent with the existence of 2 M2~M_\odot pulsars as well as with semi-empirical nuclear matter parameters at saturation, and semi-empirical hypernuclear data. Our aim is to calculate for these models all the parameters necessary for modelling dynamics of hyperon stars (such as equation of state, adiabatic indices, thermodynamic derivatives, relativistic entrainment matrix, etc.), making them available for a potential user. To this aim a general non-linear hadronic Lagrangian involving σωρϕσ\sigma\omega\rho\phi\sigma^\ast meson fields, as well as quartic terms in vector-meson fields, is considered. A universal scheme for calculation of the =0,1\ell=0,1 Landau Fermi-liquid parameters and relativistic entrainment matrix is formulated in the mean-field approximation. Use of this scheme allow us to obtain numerical tables with the equation of state, Landau quasiparticle effective masses, adiabatic indices, the =0,1\ell=0,1 Landau Fermi-liquid parameters, and the relativistic entrainment matrix for the selected models of nucleon-hyperon matter. These data are available on-line and suitable for numerical implementation in computer codes modelling various dynamical processes in NSs, in particular, oscillations of superfluid NSs and their cooling.Comment: 21 pages, 8 figures, 10 tables, accepted for publication in MNRA

    Collapse of Randomly Linked Polymers

    Full text link
    We consider polymers in which M randomly selected pairs of monomers are restricted to be in contact. Analytical arguments and numerical simulations show that an ideal (Gaussian) chain of N monomers remains expanded as long as M<<N. This result is inconsistent with results obtained from free energy considerations by Brygelson and Thirumalai (PRL76, 542 (1996)).Comment: 1 page, 1 postscript figure, LaTe

    Theta-point universality of polyampholytes with screened interactions

    Full text link
    By an efficient algorithm we evaluate exactly the disorder-averaged statistics of globally neutral self-avoiding chains with quenched random charge qi=±1q_i=\pm 1 in monomer i and nearest neighbor interactions qiqj\propto q_i q_j on square (22 monomers) and cubic (16 monomers) lattices. At the theta transition in 2D, radius of gyration, entropic and crossover exponents are well compatible with the universality class of the corresponding transition of homopolymers. Further strong indication of such class comes from direct comparison with the corresponding annealed problem. In 3D classical exponents are recovered. The percentage of charge sequences leading to folding in a unique ground state approaches zero exponentially with the chain length.Comment: 15 REVTEX pages. 4 eps-figures . 1 tabl

    A Model Ground State of Polyampholytes

    Full text link
    The ground state of randomly charged polyampholytes is conjectured to have a structure similar to a necklace, made of weakly charged parts of the chain, compacting into globules, connected by highly charged stretched `strings'. We suggest a specific structure, within the necklace model, where all the neutral parts of the chain compact into globules: The longest neutral segment compacts into a globule; in the remaining part of the chain, the longest neutral segment (the 2nd longest neutral segment) compacts into a globule, then the 3rd, and so on. We investigate the size distributions of the longest neutral segments in random charge sequences, using analytical and Monte Carlo methods. We show that the length of the n-th longest neutral segment in a sequence of N monomers is proportional to N/(n^2), while the mean number of neutral segments increases as sqrt(N). The polyampholyte in the ground state within our model is found to have an average linear size proportional to sqrt(N), and an average surface area proportional to N^(2/3).Comment: 8 two-column pages. 5 eps figures. RevTex. Submitted to Phys. Rev.

    Folding transition of the triangular lattice in a discrete three--dimensional space

    Get PDF
    A vertex model introduced by M. Bowick, P. Di Francesco, O. Golinelli, and E. Guitter (cond-mat/9502063) describing the folding of the triangular lattice onto the face centered cubic lattice has been studied in the hexagon approximation of the cluster variation method. The model describes the behaviour of a polymerized membrane in a discrete three--dimensional space. We have introduced a curvature energy and a symmetry breaking field and studied the phase diagram of the resulting model. By varying the curvature energy parameter, a first-order transition has been found between a flat and a folded phase for any value of the symmetry breaking field.Comment: 11 pages, latex file, 2 postscript figure
    corecore