2,625 research outputs found
Design, fabrication and delivery of a prototype saturator for ACPL
The design configuration and performance characteristics of a saturator developed to provide ground-based simulation for some of the experiments for ACPL-1 first flights of Spacelab are described, some difficulties encountered with the apparatus are discussed, and recommendations concerning testing of this type of instrument are presented. The saturators provide a means of accurately fixing the water vapor mixing ratio of an aerosol sample. Dew point temperatures from almost freezing to ambient room temperatures can be attained with high precision. The instruments can accommodate aerosol flow rates approaching 1000 cc/s. Provisions were made to inject aerosols upstream of these saturators, although downstream injection can be accomplished as well. A device of this type will be used in the ACPL-1 to condition various aerosols delivered concurrently to a CFD, expansion chamber, and static diffusion chamber used in zero gravity cloud-forming experiments. The saturator was designed to meet the requirements projected for the flight instrument
Oblique Alfv\'en instability driven by compensated currents
Compensated-current systems created by energetic ion beams are widespread in
space and astrophysical plasmas. The well-known examples are foreshock regions
in the solar wind and around supernova remnants. We found a new oblique
Alfv\'enic instability driven by compensated currents flowing along the
background magnetic field. Because of the vastly different electron and ion
gyroradii, oblique Alfv\'enic perturbations react differently on the currents
carried by the hot ion beams and the return electron currents. Ultimately, this
difference leads to a non-resonant aperiodic instability at perpendicular
wavelengths close to the beam ion gyroradius. The instability growth rate
increases with increasing beam current and temperature. In the solar wind
upstream of Earth's bow shock the instability growth time can drop below 10
proton cyclotron periods. Our results suggest that this instability can
contribute to the turbulence and ion acceleration in space and astrophysical
foreshocks.Comment: 6 figures, accepted by Ap
Simulator study of flight characteristics of a large twin-fuselage cargo transport airplane during approach and landing
A six degree-of-freedom, ground-based simulator study was conducted to evaluate the low speed flight characteristics of a twin fuselage cargo transport airplane and to compare these characteristics with those of a large, single fuselage (reference) transport configuration which was similar to the Lockheed C-5C airplane. The primary piloting task was the approach and landing. The results indicated that in order to achieve "acceptable' low speed handling qualities on the twin fuselage concept, considerable stability and control augmentation was required, and although the augmented airplane could be landed safely under adverse conditions, the roll performance of the aircraft had to be improved appreciably before the handling qualities were rated as being "satisfactory.' These ground-based simulation results indicated that a value of t sub phi = 30 (time required to bank 30 deg) less than 6 sec should result in "acceptable' roll response characteristics, and when t sub phi = 30 is less than 3.8 sec, "satisfactory' roll response should be attainable on such large and unusually configured aircraft as the subject twin fuselage cargo transport concept
Thunderstorm hazards flight research: Storm hazards 1980 overview
A highly instrumented NASA F-106B aircraft, modified for the storm hazards mission and protected against direct lightning strikes, was used in conjunction with various ground based radar and lightning measurement systems to collect data during thunderstorm penetration flights. During 69 thunderstorm penetrations, there were 10 direct lightning strikes to the aircraft. No problems were encountered with any of the aircraft's systems as a result of the strikes and the research instrumentation performed as designed. Electromagnetic characteristics of nine strikes were recorded, and the results of other experiments confirm the theory that X-ray radiation and nitrous oxide gas are being produced by processes associated directly with thunderstorm electric fields and lightning discharges. A better understanding of aircraft lightning attachment mechanisms and strike zones is being accomplished by careful inspection, identification, and documentation of lightning attachment points and swept stroke paths following each strike to the aircraft
Evaluation of the synoptic and mesoscale predictive capabilities of a mesoscale atmospheric simulation system
The overall performance characteristics of a limited area, hydrostatic, fine (52 km) mesh, primitive equation, numerical weather prediction model are determined in anticipation of satellite data assimilations with the model. The synoptic and mesoscale predictive capabilities of version 2.0 of this model, the Mesoscale Atmospheric Simulation System (MASS 2.0), were evaluated. The two part study is based on a sample of approximately thirty 12h and 24h forecasts of atmospheric flow patterns during spring and early summer. The synoptic scale evaluation results benchmark the performance of MASS 2.0 against that of an operational, synoptic scale weather prediction model, the Limited area Fine Mesh (LFM). The large sample allows for the calculation of statistically significant measures of forecast accuracy and the determination of systematic model errors. The synoptic scale benchmark is required before unsmoothed mesoscale forecast fields can be seriously considered
Storm hazards '79: F-106B operations summary
Preliminary flight tests with a F-106B aircraft were made on the periphery of isolated thunder cells using weather radar support. In addition to storm hazards correlation research, a direct-strike lightning measurement experiment and an atmospheric chemistry experiment were conducted. Two flights were made to close proximity to lightning generating cumulonimbus clouds; however, no direct lightning strikes were experienced. Although no discernible lightning transients were recorded, many operational techniques were identified and established
IMPALAS: Investigation of MagnetoPause Activity using Longitudinally-Aligned Satellites—a mission concept proposed for the ESA M3 2020/2022 launch
The dayside magnetopause is the primary site of energy transfer from the solar wind into the magnetosphere, and modulates the activity observed within the magnetosphere itself. Specific plasma processes operating on the magnetopause include magnetic reconnection, generation of boundary waves, propagation of pressure-pulse induced deformations of the boundary, formation of boundary layers and generation of Alfvén waves and field-aligned current systems connecting the boundary to the inner magnetosphere and ionosphere. However, many of the details of these processes are not fully understood. For example, magnetic reconnection occurs sporadically, producing flux transfer events, but how and where these arise, and their importance to the global dynamics of the magnetospheric system remain unresolved. Many of these phenomena involve propagation across the magnetopause surface. Measurements at widely-spaced (Δ ˜ 5 RE) intervals along the direction of dayside terrestrial field lines at the magnetopause would be decisive in resolving these issues. We describe a mission carrying a fields and plasmas payload (including magnetometer, ion and electron spectrometer and energetic particle telescopes) on three identical spacecraft in synchronized orbits. These provide the needed separations, with each spacecraft skimming the dayside magnetopause and continuously sampling this boundary for many hours. The orbits are phased such that (i) all three spacecraft maintain common longitude and thus sample along the same magnetopause field line; (ii) the three spacecraft reach local midday when northern European ground-based facilities also lie near local midday, enabling simultaneous sampling of magnetopause field lines and their footprints
Measuring the proton selectivity of graphene membranes
By systematically studying the proton selectivity of free-standing graphene
membranes in aqueous solutions we demonstrate that protons are transported by
passing through defects. We study the current-voltage characteristics of
single-layer graphene grown by chemical vapour deposition (CVD) when a
concentration gradient of HCl exists across it. Our measurements can
unambiguously determine that H+ ions are responsible for the selective part of
the ionic current. By comparing the observed reversal potentials with positive
and negative controls we demonstrate that the as-grown graphene is only weakly
selective for protons. We use atomic layer deposition to block most of the
defects in our CVD graphene. Our results show that a reduction in defect size
decreases the ionic current but increases proton selectivity.This is the author accepted manuscript. The final version is available from AIP via http://dx.doi.org/10.1063/1.493633
Lightning attachment patterns and flight conditions for storm hazards, 1980
As part of the NASA Langley Research Center Storm Hazards Program, 69 thunderstorm pentrations were made in 1980 with an F-106B airplane in order to record direct strike lightning data and the associated flight conditions. Ground based weather radar measurements in conjunction with these penetrations were made by NOAA National Severe Storms Laboratory in Oklahoma and by NASA Wallops Flight Center in Virginia. In 1980, the airplane received 10 direct lightning strikes; in addition, lightning transient data were recorded from 6 nearby flashes. Following each flight, the airplane was thoroughly inspected for evidence of lightning attachment, and the individual lightning attachment points were plotted on isometric projections of the airplane to identify swept flash patterns. This report presents pilot descriptions of the direct strikes to the airplane, shows the strike attachment patterns that were found, and discusses the implications of the patterns with respect to aircraft protection design. The flight conditions are also included. Finally, the lightning strike scenarios for three U.S. Air Force F-106A airplanes which were struck during routine operations are given in the appendix to this paper
- …
