2,421 research outputs found
Is communications a strategic activity in UK Education?
This qualitative exploratory paper investigates whether communications/public relations is regarded by opinion formers in UK education as a strategic business activity or a tactical marketing tool. It is based upon depth interviews with 16 senior managers with strategic roles in UK higher or further education, or Government bodies, conducted between June and September 2004. The findings seem to suggest that communications/PR is ideally seen by leaders as a strategic function, but that there are limitations to this vision becoming a reality. The research goes on to offer initial conclusions on some of the issues surrounding perception, resource, and implementation of strategic communications/PR in UK education, with implications for practitioners considered
A performance evaluation of commercial fibrinogen reference preparations and assays for Clauss and PT-derived fibrinogen
The wide availability of fibrinogen estimations based on the prothrombin time (PT-Fg) has caused concern about the variability and clinical utility of fibrinogen assays. In a multi-centre study, we investigated fibrinogen assays using various reagents and analysers, Clauss assays generally gave good agreement, although one reagent gave 15-30% higher values in DIC and thrombolysis. Two commercial reference preparations had much lower potencies than the manufacturers declared, and plasma turbidity influenced parallelism in some Clauss assays, PT-Fg assays gave higher values than Clauss and showed calibrant dependent effects, the degree of disparity correlating with calibrant and test sample turbidity. Analyser and thromboplastin dependent differences were noted. The relationship between Clauss and PT-Fg assays was sigmoid, and the plateau of maximal PT-Fg differed by about 2 g/l between reagents. ELISA and immunonephelometric assays correlated well, but with a high degree of scatter. Antigen levels were higher than Clauss, but slightly lower than PT-Fg assays, which appeared to be influenced by degraded fibrinogen. Clauss assays are generally reproducible between centres, analysers and reagents, but PT-Fg assays are not reliable in clinical settings
Chronic nicotine administration restores brain region specific upregulation of oxytocin receptor binding levels in a G72 mouse model of schizophrenia.
Nicotine dependence and schizophrenia are two mental health disorders with remarkably high comorbidity. Cigarette smoking is particularly prevalent among schizophrenic patients and it is hypothesized to comprise a form of self-medication for relieving cognitive deficits in these patients. Emerging evidence suggests a role of the neurohypophysial peptide oxytocin in the modulation of drug addiction, as well as schizophrenia symptomology; however, the underlying mechanism remains unclear. Therefore, we sought to investigate the effects of chronic nicotine administration on oxytocin receptor (OTR) binding in the brain of a transgenic mouse model of schizophrenia that carries a bacterial artificial chromosome of the human G72/G30 locus (G72Tg). Female wild-type (WT) and heterozygous G72 transgenic CD-1 mice were treated with a chronic nicotine regimen (24 mg/kg/day, osmotic minipumps for 14 days) and quantitative autoradiographic mapping of oxytocin receptors was carried out in brains of these animals. OTR binding levels were higher in the cingulate cortex (CgCx), nucleus accumbens (Acb) and central amygdala (CeA) of saline treated G72Tg mice compared with WT control mice. Chronic nicotine administration reversed this upregulation in the CgCx and CeA. Interestingly, chronic nicotine administration induced an increase in OTR binding in the CeA of solely WT mice. These results indicate that nicotine administration normalizes the dysregulated central oxytocinergic system of this mouse model of schizophrenia and may contribute towards nicotine's ability to modulate cognitive deficits which are common symptoms of schizophrenia. This article is protected by copyright. All rights reserved
Transcriptome Analysis of Gene Expression Provides New Insights into the Effect of Mild Therapeutic Hypothermia on Primary Human Cortical Astrocytes Cultured under Hypoxia
Hypothermia is increasingly used as a therapeutic measure to treat brain injury. However, the cellular mechanisms underpinning its actions are complex and are not yet fully elucidated. Astrocytes are the most abundant cell type in the brain and are likely to play a critical role. In this study, transcriptional changes and the protein expression profile of human primary cortical astrocytes cultured under hypoxic conditions for 6 h were investigated. Cells were treated either with or without a mild hypothermic intervention 2 h post-insult to mimic the treatment of patients following traumatic brain injury (TBI) and/or stroke. Using human gene expression microarrays, 411 differentially expressed genes were identified following hypothermic treatment of astrocytes following a 2 h hypoxic insult. KEGG pathway analysis indicated that these genes were mainly enriched in the Wnt and p53 signaling pathways, which were inhibited following hypothermic intervention. The expression levels of 168 genes involved in Wnt signaling were validated by quantitative real-time-PCR (qPCR). Among these genes, 10 were up-regulated and 32 were down-regulated with the remainder unchanged. Two of the differentially expressed genes (DEGs), p38 and JNK, were selected for validation at the protein level using cell based ELISA. Hypothermic intervention significantly down-regulated total protein levels for the gene products of p38 and JNK. Moreover, hypothermia significantly up-regulated the phosphorylated (activated) forms of JNK protein, while downregulating phosphorylation of p38 protein. Within the p53 signaling pathway, 35 human apoptosis-related proteins closely associated with Wnt signaling were investigated using a Proteome Profiling Array. Hypothermic intervention significantly down-regulated 18 proteins, while upregulating one protein, survivin. Hypothermia is a complex intervention; this study provides the first detailed longitudinal investigation at the transcript and protein expression levels of the molecular effects of therapeutic hypothermic intervention on hypoxic human primary cortical astrocytes. The identified genes and proteins are targets for detailed functional studies, which may help to develop new treatments for brain injury based on an in-depth mechanistic understanding of the astrocytic response to hypoxia and/or hypothermia
Dynamics of direct inter-pack encounters in endangered African wild dogs
Aggressive encounters may have important life history consequences due to the potential for injury and death, disease transmission, dispersal opportunities or exclusion from key areas of the home range. Despite this, little is known of their detailed dynamics, mainly due to the difficulties of directly observing encounters in detail. Here, we describe detailed spatial dynamics of inter-pack encounters in African wild dogs (Lycaon pictus), using data from custom-built high-resolution GPS collars in 11 free-ranging packs. On average, each pack encountered another pack approximately every 7 weeks and met each neighbour twice each year. Surprisingly, intruders were more likely to win encounters (winning 78.6% of encounters by remaining closer to the site in the short term). However, intruders did tend to move farther than residents toward their own range core in the short-term (1 h) post-encounter, and if this were used to indicate losing an encounter, then the majority (73.3%) of encounters were won by residents. Surprisingly, relative pack size had little effect on encounter outcome, and injuries were rare (<15% of encounters). These results highlight the difficulty of remotely scoring encounters involving mobile participants away from static defendable food resources. Although inter-pack range overlap was reduced following an encounter, encounter outcome did not seem to drive this, as both packs shifted their ranges post-encounter. Our results indicate that inter-pack encounters may be lower risk than previously suggested and do not appear to influence long-term movement and ranging
Sceptical Employees as CSR Ambassadors in Times of Financial Uncertainty
This chapter offers new insights into the understanding of internal (employee) perceptions of organizational corporate social responsibility (CSR) policies and strategies. This study explores the significance of employees’ involvement and scepticism upon CSR initiatives and focuses on the effects it may have upon word of mouth (WOM) and the development of employee–organisation relationships. Desk research introduces the research questions. Data for the research questions were gathered through a self-completion questionnaire distributed in a hardcopy form to the sample. An individual’s level of scepticism and involvement appears to affect the development of a positive effect on employees’ WOM. Involvement with the domain of the investment may be a central factor affecting relationship building within the organization, and upon generation of positive WOM. The chapter offers a conceptual framework to public relations (PR) and corporate communications practitioners, which may enrich their views and understanding of the use and value of CSR for communication strategies and practices. For-profit organisations are major institutions in today’s society. CSR is proffered as presenting advantages for (at macro level) society and (micro level) the organization and its employees. Concepts, such as involvement and scepticism, which have not been rigorously examined in PR and corporate communication literature, are addressed. By examining employee perceptions, managers and academic researchers gain insights into the acceptance, appreciation and effectiveness of CSR policies and activities upon the employee stakeholder group. This will affect current and future CSR communication strategies. The knowledge acquired from this chapter may be transferable outside the for-profit sector
Emotional Impairment and Persistent Upregulation of mGlu5 Receptor following Morphine Abstinence: Implications of an mGlu5-MOPr Interaction.
BACKGROUND: A difficult problem in treating opioid addicts is the maintenance of a drug-free state because of the negative emotional symptoms associated with withdrawal, which may trigger relapse. Several lines of evidence suggest a role for the metabotropic glutamate receptor 5 in opioid addiction; however, its involvement during opioid withdrawal is not clear. METHODS: Mice were treated with a 7-day escalating-dose morphine administration paradigm. Following withdrawal, the development of affective behaviors was assessed using the 3-chambered box, open-field, elevated plus-maze and forced-swim tests. Metabotropic glutamate receptor 5 autoradiographic binding was performed in mouse brains undergoing chronic morphine treatment and 7 days withdrawal. Moreover, since there is evidence showing direct effects of opioid drugs on the metabotropic glutamate receptor 5 system, the presence of an metabotropic glutamate receptor 5/μ-opioid receptor interaction was assessed by performing metabotropic glutamate receptor 5 autoradiographic binding in brains of mice lacking the μ-opioid receptor gene. RESULTS: Withdrawal from chronic morphine administration induced anxiety-like, depressive-like, and impaired sociability behaviors concomitant with a marked upregulation of metabotropic glutamate receptor 5 binding. Administration of the metabotropic glutamate receptor 5 antagonist, 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine, reversed morphine abstinence-induced depressive-like behaviors. A brain region-specific increase in metabotropic glutamate receptor 5 binding was observed in the nucleus accumbens shell, thalamus, hypothalamus, and amygdala of μ-opioid receptor knockout mice compared with controls. CONCLUSIONS: These results suggest an association between metabotropic glutamate receptor 5 alterations and the emergence of opioid withdrawal-related affective behaviors. This study supports metabotropic glutamate receptor 5 system as a target for the development of pharmacotherapies for the treatment of opioid addiction. Moreover, our data show direct effects of μ-opioid receptor system manipulation on metabotropic glutamate receptor 5 binding in the brain
XTE J0111.2-7317 : a nebula-embedded X-ray binary in the SMC
The observed characteristics of the nebulosity surrounding the SMC High Mass
X-ray Binary XTE J0111.2-7317 are examined in the context of three possible
nebular types: SNR, bowshock and HII region. Observational evidence is
presented which appears to support the interpretation that the nebulosity
surrounding XTE J0111.2-7317 is an HII region. The source therefore appears to
be a normal SMC Be X-ray binary (BeXRB) embedded in a locally enhanced ISM
which it has photoionised to create an HII region. This is supported by
observations of the X-ray outburst seen with BATSE and RXTE in 1998-1999. It
exhibited characteristics typical of a giant or type II outburst in a BeXRB
including large spin-up rates, Lx~10E38 erg/sq.cm-s, and a correlation between
spin-up rate and pulsed flux. However, the temporal profile of the outburst was
unusual, consisting of two similar intensity peaks, with the first peak of
shorter duration than the second.Comment: Accepted for publication by MNRA
Atom-by-Atom Substitution of Mn in GaAs and Visualization of their Hole-Mediated Interactions
The discovery of ferromagnetism in Mn doped GaAs [1] has ignited interest in
the development of semiconductor technologies based on electron spin and has
led to several proof-of-concept spintronic devices [2-4]. A major hurdle for
realistic applications of (Ga,Mn)As, or other dilute magnetic semiconductors,
remains their below room-temperature ferromagnetic transition temperature.
Enhancing ferromagnetism in semiconductors requires understanding the
mechanisms for interaction between magnetic dopants, such as Mn, and
identifying the circumstances in which ferromagnetic interactions are maximized
[5]. Here we report the use of a novel atom-by-atom substitution technique with
the scanning tunnelling microscope (STM) to perform the first controlled atomic
scale study of the interactions between isolated Mn acceptors mediated by the
electronic states of GaAs. High-resolution STM measurements are used to
visualize the GaAs electronic states that participate in the Mn-Mn interaction
and to quantify the interaction strengths as a function of relative position
and orientation. Our experimental findings, which can be explained using
tight-binding model calculations, reveal a strong dependence of ferromagnetic
interaction on crystallographic orientation. This anisotropic interaction can
potentially be exploited by growing oriented Ga1-xMnxAs structures to enhance
the ferromagnetic transition temperature beyond that achieved in randomly doped
samples. Our experimental methods also provide a realistic approach to create
precise arrangements of single spins as coupled quantum bits for memory or
information processing purposes
- …
