3,661 research outputs found
Recommended from our members
Nutritional strategies for minimizing phosphorus pollution from the livestock industry
Abstract
Livestock manure traditionally has been considered and used as a valuable resource by farmers to improve crop production. Livestock manure is rich in nutrients (nitrogen (N) and phosphorus (P)) and thus has been land applied to enrich soils. But land application of manure nutrients in excess of crop requirements can lead to saturated soil and loss of nutrients to surface water via runoff. Environmental concerns with P from animal agriculture are significant because livestock manure has always been land applied to meet crops' N requirement, resulting in P application in excess of crops' P requirement. The problem is aggravated with the intensification of livestock production, and now animal agriculture has been identified as a primary source of water quality impairment in many regions. But intensification and continuous advancement of livestock production is required to meet the increasing demand of food supply to feed a growing global population. Therefore, management strategies are needed that will improve livestock production while supporting the environmental and social pillars of sustainability. Nutritional strategies are economically and environ mentally efficient tools to reduce P excretion by livestock. This chapter discusses nutritional strategies including precision feeding, phase feeding and approaches to improve feed P availability.</p
Recommended from our members
Effect of abomasal inorganic phosphorus infusion on phosphorus absorption in large intestine, milk production, and phosphorus excretion of dairy cattle
The objective of the study was to evaluate the effect of inorganic phosphorus (Pi) infusion on P absorption in large intestine, milk production and phosphorus excretion. Four ruminally- and ileally-cannulated crossbred cows were used in a 4×4 Latin Square with 21 d periods. Cows were fed a total mixed ration containing 0.21% P, providing 50% of the cows’ P requirement. Cobalt-EDTA (Co-EDTA) was used as marker to measure large intestine digesta flow. On d 13 to 21 of each period, each cow was infused daily with 0, 20.1, 40.2, or 60.3 g Pi into the abomasum and total collection was conducted on d 18 to 21. Ileal samples were collected every 9 h on d 18 to d 21. Feed, digesta, and fecal samples were analyzed for total P and Pi using the molybdovanadate yellow method and blue method, respectively. All data were analyzed using PROC GLIMMIX in SAS 9.3 using contrasts to evaluate linear, quadratic and cubic effects of Pi infusion dose. Dry matter (DM) intake, apparent DM digestibility, milk yield and milk total P were unaffected by Pi infusion. Ileal flow and fecal excretion of total P and Pi increased linearly with increasing infused Pi. In the large intestine, net absorption of TP and Pi were increased linearly with increasing infused Pi. The magnitude of absorption from the large intestine was greater than reflected in current models and raising questions that could be evaluated with longer infusion periods or dietary alteration
White Matter Abnormalities in Patients with Treatment-Resistant Genetic Generalized Epilepsies.
BACKGROUND Genetic generalized epilepsies (GGEs) are associated with microstructural brain abnormalities that can be evaluated with diffusion tensor imaging (DTI). Available studies on GGEs have conflicting results. Our primary goal was to compare the white matter structure in a cohort of patients with video/EEG-confirmed GGEs to healthy controls (HCs). Our secondary goal was to assess the potential effect of age at GGE onset on the white matter structure. MATERIAL AND METHODS A convenience sample of 23 patients with well-characterized treatment-resistant GGEs (13 female) was compared to 23 HCs. All participants received MRI at 3T. DTI indices, including fractional anisotropy (FA) and mean diffusivity (MD), were compared between groups using Tract-Based Spatial Statistics (TBSS). RESULTS After controlling for differences between groups, abnormalities in DTI parameters were observed in patients with GGEs, including decreases in functional anisotropy (FA) in the hemispheric (left>right) and brain stem white matter. The examination of the effect of age at GGE onset on the white matter integrity revealed a significant negative correlation in the left parietal white matter region FA (R=-0.504; p=0.017); similar trends were observed in the white matter underlying left motor cortex (R=-0.357; p=0.103) and left posterior limb of the internal capsule (R=-0.319; p=0.148). CONCLUSIONS Our study confirms the presence of widespread white matter abnormalities in patients with GGEs and provides evidence that the age at GGE onset may have an important effect on white matter integrity
Enskog Theory for Polydisperse Granular Mixtures. I. Navier-Stokes order Transport
A hydrodynamic description for an -component mixture of inelastic, smooth
hard disks (two dimensions) or spheres (three dimensions) is derived based on
the revised Enskog theory for the single-particle velocity distribution
functions. In this first portion of the two-part series, the macroscopic
balance equations for mass, momentum, and energy are derived. Constitutive
equations are calculated from exact expressions for the fluxes by a
Chapman-Enskog expansion carried out to first order in spatial gradients,
thereby resulting in a Navier-Stokes order theory. Within this context of small
gradients, the theory is applicable to a wide range of restitution coefficients
and densities. The resulting integral-differential equations for the zeroth-
and first-order approximations of the distribution functions are given in exact
form. An approximate solution to these equations is required for practical
purposes in order to cast the constitutive quantities as algebraic functions of
the macroscopic variables; this task is described in the companion paper.Comment: 36 pages, to be published in Phys. Rev.
The Behavior of Granular Materials under Cyclic Shear
The design and development of a parallel plate shear cell for the study of
large scale shear flows in granular materials is presented. The parallel plate
geometry allows for shear studies without the effects of curvature found in the
more common Couette experiments. A system of independently movable slats
creates a well with side walls that deform in response to the motions of grains
within the pack. This allows for true parallel plate shear with minimal
interference from the containing geometry. The motions of the side walls also
allow for a direct measurement of the velocity profile across the granular
pack. Results are presented for applying this system to the study of transients
in granular shear and for shear-induced crystallization. Initial shear profiles
are found to vary from packing to packing, ranging from a linear profile across
the entire system to an exponential decay with a width of approximately 6 bead
diameters. As the system is sheared, the velocity profile becomes much sharper,
resembling an exponential decay with a width of roughly 3 bead diameters.
Further shearing produces velocity profiles which can no longer be fit to an
exponential decay, but are better represented as a Gaussian decay or error
function profile. Cyclic shear is found to produce large scale ordering of the
granular pack, which has a profound impact on the shear profile. There exist
periods of time in which there is slipping between layers as well as periods of
time in which the layered particles lock together resulting in very little
relative motion.Comment: 10 pages including 12 figure
Recommended from our members
Exposure to dairy manure leads to greater antibiotic resistance and increased mass-specific respiration in soil microbial communities
Intensifying livestock production to meet the demands of a growing global population coincides with increases in both the administration of veterinary antibiotics and manure inputs to soils. These trends have the potential to increase antibiotic resistance in soil microbial communities. The effect of maintaining increased antibiotic resistance on soil microbial communities and the ecosystem processes they regulate is unknown. We compare soil microbial communities from paired reference and dairy manure-exposed sites across the US. Given that manure exposure has been shown to elicit increased antibiotic resistance in soil microbial communities, we expect that manure-exposed sites will exhibit 1) compositionally different soil microbial communities, with shifts toward taxa known to exhibit resistance; 2) greater abundance of antibiotic resistance genes; and 3) corresponding maintenance of antibiotic resistance would lead to decreased microbial efficiency. We found that bacterial and fungal communities differed between reference and manure-exposed sites. Additionally, β-lactam resistance gene ampC was 5.2-fold greater under manure exposure, potentially due to the use of cephalosporin antibiotics in dairy herds. Finally, ampC abundance was positively correlated with indicators of microbial stress, and microbial mass-specific respiration, which increased 2.1-fold under manure exposure. These findings demonstrate that the maintenance of antibiotic resistance associated with manure inputs alters soil microbial communities and ecosystem function
Multiscaffold DNA Origami Nanoparticle Waveguides
DNA origami templated self-assembly has shown its potential in creating rationally designed nanophotonic devices in a parallel and repeatable manner. In this investigation, we employ a multiscaffold DNA origami approach to fabricate linear waveguides of 10 nm diameter gold nanoparticles. This approach provides independent control over nanoparticle separation and spatial arrangement. The waveguides were characterized using atomic force microscopy and far-field polarization spectroscopy. This work provides a path toward large-scale plasmonic circuitry
Gene expression profiling of breast tumours from New Zealand patients
AIMS: New Zealand has one of the highest rates of breast cancer incidence in the world. We investigated the gene expression profiles of breast tumours from New Zealand patients, compared them to gene expression profiles of international breast cancer cohorts and identified any associations between altered gene expression and the clinicopathological features of the tumours.
METHODS: Affymetrix microarrays were used to measure the gene expression profiles of 106 breast tumours from New Zealand patients. Gene expression data from six international breast cancer cohorts were collated, and all the gene expression data were analysed using standard bioinformatic and statistical tools.
RESULTS: Gene expression profiles associated with tumour ER and ERBB2 status, molecular subtype and selected gene expression signatures within the New Zealand cohort were consistent with those found in international cohorts. Significant differences in clinicopathological features such as tumour grade, tumour size and lymph node status were also observed between the New Zealand and international cohorts.
CONCLUSIONS: Gene expression profiles, which are a sensitive indicator of tumour biology, showed no clear di¬fference between breast tumours from New Zealand patients and those from non-New Zealand patients. This suggests that other factors may contribute to the high and increasing breast cancer incidence in New Zealand compared to international populations
- …
