106 research outputs found

    Hot electron transport in Ballistic Electron Emission Spectroscopy: band structure effects and k-space currents

    Full text link
    Using a Green's function approach, we investigate band structure effects in the BEEM current distribution in reciprocal space. In the elastic limit, this formalism provides a 'parameter free' solution to the BEEM problem. At low temperatures, and for thin metallic layers, the elastic approximation is enough to explain the experimental I(V) curves at low voltages. At higher voltages inelastic effects are approximately taken into account by introducing an effective RPA-electron lifetime, much in similarity with LEED theory. For thick films, however, additional damping mechanisms are required to obtain agreement with experiment.Comment: 4 pages, 3 postscript figures, revte

    Energy relaxation of an excited electron gas in quantum wires: many-body electron LO-phonon coupling

    Full text link
    We theoretically study energy relaxation via LO-phonon emission in an excited one-dimensional electron gas confined in a GaAs quantum wire structure. We find that the inclusion of phonon renormalization effects in the theory extends the LO-phonon dominated loss regime down to substantially lower temperatures. We show that a simple plasmon-pole approximation works well for this problem, and discuss implications of our results for low temperature electron heating experiments in quantum wires.Comment: 10 pages, RevTex, 4 figures included. Also available at http://www-cmg.physics.umd.edu/~lzheng

    Electron energy relaxation times from ballistic-electron-emission spectroscopy

    Get PDF
    Using a Green’s-function approach that incorporates band-structure effects, and a complementary k-space Monte-Carlo analysis, we show how to get a theoretically consistent determination of the inelastic mean free path λee(E) due to electron-electron interaction from ballistic electron emission spectroscopy. Exploiting experimental data taken at T=77K on a thin-Au film (ee(E) predicted by the standard Fermi-liquid theory provides excellent agreement between theoretical and experimental I(V) spectra. In agreement with theories for real metals, an enhancement of λee(E) by a factor of two with respect to its electron-gas value is found

    The effect of Auger heating on intraband carrier relaxation in semiconductor quantumrods

    Full text link
    The rate at which excited charge carriers relax to their equilibrium state affects many aspects of the performance of nanoscale devices, including switching speed, carrier mobility and luminescent efficiency. Better understanding of the processes that govern carrier relaxation therefore has important technological implications. A significant increase in carrier-carrier interactions caused by strong spatial confinement of electronic excitations in semiconductor nanostructures leads to a considerable enhancement of Auger effects, which can further result in unusual, Auger-process-controlled recombination and energy-relaxation regimes. Here, we report the first experimental observation of efficient Auger heating in CdSe quantum rods at high pump intensities, leading to a strong reduction of carrier cooling rates. In this regime, the carrier temperature is determined by the balance between energy outflow through phonon emission and energy inflow because of Auger heating. This equilibrium results in peculiar carrier cooling dynamics that closely correlate with recombination dynamics, an effect never before seen in bulk or nanoscale semiconductors.Comment: 7 pages, 4 figure

    Nonequilibrium Phonon Processes

    Full text link

    Multiphonon Scattering

    Full text link

    Non-ohmic transport and phonon amplification in polar semiconductors

    Full text link

    Hot Phonons in Microstructures

    Full text link
    corecore