45 research outputs found

    Poly(methyl methacrylate) reinforced poly(vinylidene fluoride) composites electrospun nanofibrous polymer electrolytes as potential separator for lithium ion batteries

    Get PDF
    Fabrication of nanofibrous polymer electrolyte membranes of poly(vinylidene fluoride) (PVdF) and poly(methyl methacrylate) (PMMA) in different proportion (PVdF:PMMA = 100:0, 80:20 and 50:50) by electrospinning is reported to investigate the influence of PMMA on lithium ion battery performance of PVdF membrane as separator. As-fabricated polymer electrospun nanofibrous membranes were characterized by SEM, FTIR, XRD, TGA and DSC for morphology, structure, crystallinity and thermal stability. PVdF–PMMA (50:50) polymer electrolyte membrane showed ionic conductivity 0.15 S/cm and electrolyte uptake 290% at room temperature. After 50 cycles, the discharge capacity 140 mAh/g of Li/PE/LiFePO4 cells with PVdF–PMMA (50:50) as polymer electrolyte (PE) membrane was found to be retained around 93.3%. The electrolyte uptake, ionic conductivity, and discharge capacity retention were improved by optimizing the proportion of PMMA in PVdF. Nanofibrous PVdF–PMMA (50:50) polymer electrolyte membrane was found to be a potential separator for lithium ion batteries

    AFM study of morphology and mechanical properties of a chimeric 2 spider silk and bone sialoprotein protein for bone regeneration

    Get PDF
    Atomic force microscopy (AFM) was used to assess a new chimeric protein consisting of a fusion protein of the consensus repeat for Nephila clavipes spider dragline protein and bone sialoprotein (6merþBSP). The elastic modulus of this protein in film form was assessed through force curves, and film surface roughness was also determined. The results showed a significant difference among the elastic modulus of the chimeric silk protein, 6merþBSP, and control films consisting of only the silk component (6mer). The behavior of the 6merþBSP and 6mer proteins in aqueous solution in the presence of calcium (Ca) ions was also assessed to determine interactions between the inorganic and organic components related to bone interactions, anchoring, and biomaterial network formation. The results demonstrated the formation of protein networks in the presence of Ca2þ ions, characteristics that may be important in the context of controlling materials assembly and properties related to bone formation with this new chimeric silk-BSP protein.Silvia Games thanks the Foundation for Science and Technology (FCT) for supporting her Ph.D. grant, SFRH/BD/28603/2006. This work was carried out under the scope of the European NoE EXPERTISSUES (NMP3-CT-2004-500283), the Chimera project (PTDC/EBB-EBI/109093/2008) funded by the FCT agency, the NIH (P41 EB002520) Tissue Engineering Resource Center, and the NIH (EB003210 and DE017207)

    Recent advances and perspectives on starch nanocomposites for packaging applications

    Get PDF
    Starch nanocomposites are popular and abundant materials in packaging sectors. The aim of this work is to review some of the most popular starch nanocomposite systems that have been used nowadays. Due to a wide range of applicable reinforcements, nanocomposite systems are investigated based on nanofiller type such as nanoclays, polysaccharides and carbonaceous nanofillers. Furthermore, the structures of starch and material preparation methods for their nanocomposites are also mentioned in this review. It is clearly presented that mechanical, thermal and barrier properties of plasticised starch can be improved with well-dispersed nanofillers in starch nanocomposites

    Effect of Aluminium Oxide (Al2O3) Nanoparticles Addition into Lubricating Oil on Tribological Performance

    No full text

    Poly(methyl methacrylate) reinforced poly(vinylidene fluoride) composites electrospun nanofibrous polymer electrolytes as potential separator for lithium ion batteries

    No full text
    Abstract Fabrication of nanofibrous polymer electrolyte membranes of poly(vinylidene fluoride) (PVdF) and poly(methyl methacrylate) (PMMA) in different proportion (PVdF:PMMA = 100:0, 80:20 and 50:50) by electrospinning is reported to investigate the influence of PMMA on lithium ion battery performance of PVdF membrane as separator. As-fabricated polymer electrospun nanofibrous membranes were characterized by SEM, FTIR, XRD, TGA and DSC for morphology, structure, crystallinity and thermal stability. PVdF–PMMA (50:50) polymer electrolyte membrane showed ionic conductivity 0.15 S/cm and electrolyte uptake 290% at room temperature. After 50 cycles, the discharge capacity 140 mAh/g of Li/PE/LiFePO4 cells with PVdF–PMMA (50:50) as polymer electrolyte (PE) membrane was found to be retained around 93.3%. The electrolyte uptake, ionic conductivity, and discharge capacity retention were improved by optimizing the proportion of PMMA in PVdF. Nanofibrous PVdF–PMMA (50:50) polymer electrolyte membrane was found to be a potential separator for lithium ion batteries
    corecore