1,934 research outputs found
Carbon capture in the cement industry: technologies, progress, and retrofitting
Several different carbon-capture technologies have been proposed for use in the cement industry. This paper reviews their attributes, the progress that has been made toward their commercialization, and the major challenges facing their retrofitting to existing cement plants. A technology readiness level (TRL) scale for carbon capture in the cement industry is developed. For application at cement plants, partial oxy-fuel combustion, amine scrubbing, and calcium looping are the most developed (TRL 6 being the pilot system demonstrated in relevant environment), followed by direct capture (TRL 4–5 being the component and system validation at lab-scale in a relevant environment) and full oxy-fuel combustion (TRL 4 being the component and system validation at lab-scale in a lab environment). Our review suggests that advancing to TRL 7 (demonstration in plant environment) seems to be a challenge for the industry, representing a major step up from TRL 6. The important attributes that a cement plant must have to be “carbon-capture ready” for each capture technology selection is evaluated. Common requirements are space around the preheater and precalciner section, access to CO2 transport infrastructure, and a retrofittable preheater tower. Evidence from the electricity generation sector suggests that carbon capture readiness is not always cost-effective. The similar durations of cement-plant renovation and capture-plant construction suggests that synchronizing these two actions may save considerable time and money
A revised look at the effects of the Channel Model on molecular communication system
Molecular communications, where information is passed between the Transmitter (TX) and the Receiver (RX) via molecules is a promising area with vast potential applications. However, the infancy of the topic within the overall taxonomy of communications has meant that to date, several channel models are in press, each of which is applied under various constraints and/or assumptions. Amongst them is that the arrival of molecules in different time slots can be, or is, considered as independent events. In practice, this assumption is not accurate, as the molecules arriving in the previous slot reduce the possible number of molecules in the next slot and hence make them correlated. In this letter, we analyze a more realistic performance of a molecular communication assuming correlated events. The key result shown, is that the widely used model assuming independent events significantly overestimates the error rates in the channel. This result is thus critical to researchers who focus on energy use at the nano-scale, as the new analysis provides a more realistic prediction and therefore, less energy will be needed to attain a desired error rate, increasing system feasibility
Validity of Ligand Efficiency Metrics
A recent viewpoint article (Improving the plausibility of success with inefficient metrics. ACS Med. Chem. Lett. 2014, 5, 2-5) argued that the standard definition of ligand efficiency (LE) is mathematically invalid. In this viewpoint, we address this criticism and show categorically that the definition of LE is mathematically valid. LE and other metrics such as lipophilic ligand efficiency (LLE) can be useful during the multiparameter optimization challenge faced by medicinal chemists
Discovery of TUG-770: a highly potent free fatty acid receptor 1 (FFA1/GPR40) agonist for treatment of type 2 diabetes
Free fatty acid receptor 1 (FFA1 or GPR40) enhances glucose-stimulated insulin secretion from pancreatic β-cells and currently attracts high interest as a new target for the treatment of type 2 diabetes. We here report the discovery of a highly potent FFA1 agonist with favorable physicochemical and pharmacokinetic properties. The compound efficiently normalizes glucose tolerance in diet-induced obese mice, an effect that is fully sustained after 29 days of chronic dosing
p-Adic Models of Ultrametric Diffusion Constrained by Hierarchical Energy Landscapes
We demonstrate that p-adic analysis is a natural basis for the construction
of a wide variety of the ultrametric diffusion models constrained by
hierarchical energy landscapes. A general analytical description in terms of
p-adic analysis is given for a class of models. Two exactly solvable examples,
i.e. the ultrametric diffusion constraned by the linear energy landscape and
the ultrametric diffusion with reaction sink, are considered. We show that such
models can be applied to both the relaxation in complex systems and the rate
processes coupled to rearrangenment of the complex surrounding.Comment: 14 pages, 6 eps figures, LaTeX 2.0
From Anti-equilibrium to The Socialist System and Beyond
This essay attempts to understand János Kornai’s works from a political economy perspective. It argues that Kornai has significantly contributed to the formation of a new paradigm of political economy. The main endeavor of Kornai has been the combination of analytical concepts of economics with the empirical description of real economies. After a certain period of theoretical experimentation János Kornai formulated his research program that can be called the shortage economy explanation of the socialist system. The Economics of Shortage and The Socialist System have created a new theoretical paradigm in a framework in which it has become possible to establish a connection between the analytical and empirical, universal and historical aspects of the theory studying the socialist system as a real economic entity. János Kornai has built his analysis of the socialist system on the primary role of politics in the creation of economic institutions. In his present work on capitalism he has extended this thesis to the capitalist system. This seems to be an important contribution of his to a new political economy paradigm that is just in the process of formation
Large emergency-response exercises: qualitative characteristics - a survey
Exercises, drills, or simulations are widely used, by governments, agencies and commercial organizations, to simulate serious incidents and train staff how to respond to them. International cooperation has led to increasingly large-scale exercises, often involving hundreds or even thousands of participants in many locations. The difference between ‘large’ and ‘small’ exercises is more than one of size: (a) Large exercises are more ‘experiential’ and more likely to undermine any model of reality that single organizations may create; (b) they create a ‘play space’ in which organizations and individuals act out their own needs and identifications, and a ritual with strong social implications; (c) group-analytic psychotherapy suggests that the emotions aroused in a large group may be stronger and more difficult to control. Feelings are an unacknowledged major factor in the success or failure of exercises; (d) successful large exercises help improve the nature of trust between individuals and the organizations they represent, changing it from a situational trust to a personal trust; (e) it is more difficult to learn from large exercises or to apply the lessons identified; (f) however, large exercises can help develop organizations and individuals. Exercises (and simulation in general) need to be approached from a broader multidisciplinary direction if their full potential is to be realized
Nonequilibrium spectral diffusion due to laser heating in stimulated photon echo spectroscopy of low temperature glasses
A quantitative theory is developed, which accounts for heating artifacts in
three-pulse photon echo (3PE) experiments. The heat diffusion equation is
solved and the average value of the temperature in the focal volume of the
laser is determined as a function of the 3PE waiting time. This temperature is
used in the framework of nonequilibrium spectral diffusion theory to calculate
the effective homogeneous linewidth of an ensemble of probe molecules embedded
in an amorphous host. The theory fits recently observed plateaus and bumps
without introducing a gap in the distribution function of flip rates of the
two-level systems or any other major modification of the standard tunneling
model.Comment: 10 pages, Revtex, 6 eps-figures, accepted for publication in Phys.
Rev.
Evidence and Ideology in Macroeconomics: The Case of Investment Cycles
The paper reports the principal findings of a long term research project on the description and explanation of business cycles. The research strongly confirmed the older view that business cycles have large systematic components that take the form of investment cycles. These quasi-periodic movements can be represented as low order, stochastic, dynamic processes with complex eigenvalues. Specifically, there is a fixed investment cycle of about 8 years and an inventory cycle of about 4 years. Maximum entropy spectral analysis was employed for the description of the cycles and continuous time econometrics for the explanatory models. The central explanatory mechanism is the second order accelerator, which incorporates adjustment costs both in relation to the capital stock and the rate of investment. By means of parametric resonance it was possible to show, both theoretically and empirically how cycles aggregate from the micro to the macro level. The same mathematical tool was also used to explain the international convergence of cycles. I argue that the theory of investment cycles was abandoned for ideological, not for evidential reasons. Methodological issues are also discussed
Investigating situated cultural practices through cross-sectoral digital collaborations: policies, processes, insights
The (Belfast) Good Friday Agreement represents a major milestone in Northern Ireland's recent political history, with complex conditions allowing for formation of a ‘cross-community’ system of government enabling power sharing between parties representing Protestant/loyalist and Catholic/nationalist constituencies. This article examines the apparent flourishing of community-focused digital practices over the subsequent ‘post-conflict’ decade, galvanised by Northern Irish and EU policy initiatives armed with consolidating the peace process. Numerous digital heritage and storytelling projects have been catalysed within programmes aiming to foster social processes, community cohesion and cross-community exchange. The article outlines two projects—‘digital memory boxes’ and ‘interactive galleon’—developed during 2007–2008 within practice-led PhD enquiry conducted in collaboration with the Nerve Centre, a third-sector media education organisation. The article goes on to critically examine the processes involved in practically realising, and creatively and theoretically reconciling, community-engaged digital production in a particular socio-political context of academic-community collaboration
- …
