9,462 research outputs found
Glassy chondrule mesostasis in EET 96029: a CM3 component of a minimally altered CM2 carbonaceous chondrite
No abstract available
Impact-generated hydrothermal circulation and metasomatism of the rochechouart astrobleme: mineralogy and major and trace element distribution
The energy released during a hypervelocity
impact on Earth can generate high temperatures
in the target rock. There are currently 170 known
impact structures worldwide, of which over one-third
contain fossil hydrothermal systems [1]. Results from
the analysis of these hydrothermal systems have many
implications for the study of the origin of life on Earth
and potential thereof on Mars. Hypervelocity impacts
are also of particular economic interest as they may
produce, expose or concentrate high commodity resources
such as hydrocarbons, precious metals and ore
minerals
Impact fracturing and aqueous alteration of the CM carbonaceous chondrites
Aqueous alteration of the CM carbonaceous
chondrites has produced a suite of secondary
minerals, and differences between meteorites in
their abundance defines a progressive alteration sequence
[e.g. 1, 2]. The means by which this water
gained access to the original anhydrous constituents of
the meteorites is the subject of considerable debate.
Studies of rock texture, mineralogy and bulk chemical
composition have concluded that solutions were generated
by the melting of water ice in situ, and remained
essentially static as a consequence very low intergranular
permeabilities [e.g. 3, 4]. By contrast, results of
oxygen isotope work and modelling have suggested
that the fluids moved considerable distances within the
parent body [5, 6]. Given the intergranular permeability
of the CMs, an extensive fracture network would be
required to support such flow.
Clues to how the two very different models for
aqueous alteration of the CMs can be reconciled have
been recently provided by Rubin [7]. He recognised a
good correlation between the magnitude of impact-induced
compaction of CM meteorites and their degree
of aqueous processing, with the more highly deformed
meteorites being more altered. Here we have asked
whether compaction was accompanied by the development
of fracture networks that could have provided the
conduits for aqueous solutions that mediated all or
some of the alteration
Evidence for an impact-induced biosphere from the δ34S signature of sulphides in the Rochechouart impact structure, France
The highly eroded 23 km diameter Rochechouart impact structure, France, has extensive evidence for post-impact hydrothermal alteration and sulphide mineralization. The sulphides can be divided into four types on the basis of their mineralogy and host rock. They range from pyrites and chalcopyrite in the underlying coherent crystalline basement to pyrites hosted in the impactites. Sulphur isotopic results show that δ34S values vary over a wide range, from -35.8‰ to +0.4‰. The highest values, δ34S -3.7‰ to +0.4‰, are recorded in the coherent basement, and likely represent a primary terrestrial sulphur reservoir. Sulphides with the lowest values, δ34S -35.8‰ to -5.2‰, are hosted within locally brecciated and displaced parautochthonous and autochthonous impactites. Intermediate δ34S values of -10.7‰ to -1.2‰ are recorded in the semi-continuous monomict lithic breccia unit, differing between carbonate-hosted sulphides and intraclastic and clastic matrix-hosted sulphides. Such variable isotope values are consistent with a biological origin, via bacterial sulphate reduction, for sulphides in the parautochthonous and autochthonous units; these minerals formed in the shallow subsurface and are probably related to the post impact hydrothermal system. The source of the sulphate is likely to have been seawater, penecontemporaneous to the impact, as inferred from the marginal marine paleogeography of the structure. In other eroded impact craters that show evidence for impact-induced hydrothermal circulation, indirect evidence for life may be sought isotopically within late-stage (≤120°C) secondary sulphides and within the shocked and brecciated basement immediately beneath the transient crater floor
- …
