306 research outputs found

    Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers.

    Get PDF
    Sex hormones and their receptors play critical roles in the development and progression of the breast and prostate cancers. Here we report that a novel type of transfer RNA (tRNA)-derived small RNA, termed Sex HOrmone-dependent TRNA-derived RNAs (SHOT-RNAs), are specifically and abundantly expressed in estrogen receptor (ER)-positive breast cancer and androgen receptor (AR)-positive prostate cancer cell lines. SHOT-RNAs are not abundantly present in ER(-) breast cancer, AR(-) prostate cancer, or other examined cancer cell lines from other tissues. ER-dependent accumulation of SHOT-RNAs is not limited to a cell culture system, but it also occurs in luminal-type breast cancer patient tissues. SHOT-RNAs are produced from aminoacylated mature tRNAs by angiogenin-mediated anticodon cleavage, which is promoted by sex hormones and their receptors. Resultant 5\u27- and 3\u27-SHOT-RNAs, corresponding to 5\u27- and 3\u27-tRNA halves, bear a cyclic phosphate (cP) and an amino acid at the 3\u27-end, respectively. By devising a cP-RNA-seq method that is able to exclusively amplify and sequence cP-containing RNAs, we identified the complete repertoire of 5\u27-SHOT-RNAs. Furthermore, 5\u27-SHOT-RNA, but not 3\u27-SHOT-RNA, has significant functional involvement in cell proliferation. These results have unveiled a novel tRNA-engaged pathway in tumorigenesis of hormone-dependent cancers and implicate SHOT-RNAs as potential candidates for biomarkers and therapeutic targets

    Consequential considerations when mapping tRNA fragments

    Get PDF
    We examine several of the choices that went into the design of tDRmapper, a recently reported tool for identifying transfer RNA (tRNA) fragments in deep sequencing data, evaluate them in the context of currently available knowledge, and discuss their potential impact on the output that the tool generates

    The selective phosphodiesterase 4 inhibitor roflumilast and phosphodiesterase 3/4 inhibitor pumafentrine reduce clinical score and TNF expression in experimental colitis in mice.

    Get PDF
    The specific inhibition of phosphodiesterase (PDE)4 and dual inhibition of PDE3 and PDE4 has been shown to decrease inflammation by suppression of pro-inflammatory cytokine synthesis. We examined the effect of roflumilast, a selective PDE4 inhibitor marketed for severe COPD, and the investigational compound pumafentrine, a dual PDE3/PDE4 inhibitor, in the preventive dextran sodium sulfate (DSS)-induced colitis model. The clinical score, colon length, histologic score and colon cytokine production from mice with DSS-induced colitis (3.5% DSS in drinking water for 11 days) receiving either roflumilast (1 or 5 mg/kg body weight/d p.o.) or pumafentrine (1.5 or 5 mg/kg/d p.o.) were determined and compared to vehicle treated control mice. In the pumafentrine-treated animals, splenocytes were analyzed for interferon-γ (IFNγ) production and CD69 expression. Roflumilast treatment resulted in dose-dependent improvements of clinical score (weight loss, stool consistency and bleeding), colon length, and local tumor necrosis factor-α (TNFα) production in the colonic tissue. These findings, however, were not associated with an improvement of the histologic score. Administration of pumafentrine at 5 mg/kg/d alleviated the clinical score, the colon length shortening, and local TNFα production. In vitro stimulated splenocytes after in vivo treatment with pumafentrine showed a significantly lower state of activation and production of IFNγ compared to no treatment in vivo. These series of experiments document the ameliorating effect of roflumilast and pumafentrine on the clinical score and TNF expression of experimental colitis in mice

    Edible crabs “Go West”: migrations and incubation cycle of Cancer pagurus revealed by electronic tags

    Get PDF
    Crustaceans are key components of marine ecosystems which, like other exploited marine taxa, show seasonable patterns of distribution and activity, with consequences for their availability to capture by targeted fisheries. Despite concerns over the sustainability of crab fisheries worldwide, difficulties in observing crabs’ behaviour over their annual cycles, and the timings and durations of reproduction, remain poorly understood. From the release of 128 mature female edible crabs tagged with electronic data storage tags (DSTs), we demonstrate predominantly westward migration in the English Channel. Eastern Channel crabs migrated further than western Channel crabs, while crabs released outside the Channel showed little or no migration. Individual migrations were punctuated by a 7-month hiatus, when crabs remained stationary, coincident with the main period of crab spawning and egg incubation. Incubation commenced earlier in the west, from late October onwards, and brooding locations, determined using tidal geolocation, occurred throughout the species range. With an overall return rate of 34%, our results demonstrate that previous reluctance to tag crabs with relatively high-cost DSTs for fear of loss following moulting is unfounded, and that DSTs can generate precise information with regards life-history metrics that would be unachievable using other conventional means

    Dystonia in neurodegeneration with brain iron accumulation: outcome of bilateral pallidal stimulation

    Get PDF
    Neurodegeneration with brain iron accumulation encompasses a heterogeneous group of rare neurodegenerative disorders that are characterized by iron accumulation in the brain. Severe generalized dystonia is frequently a prominent symptom and can be very disabling, causing gait impairment, difficulty with speech and swallowing, pain and respiratory distress. Several case reports and one case series have been published concerning therapeutic outcome of pallidal deep brain stimulation in dystonia caused by neurodegeneration with brain iron degeneration, reporting mostly favourable outcomes. However, with case studies, there may be a reporting bias towards favourable outcome. Thus, we undertook this multi-centre retrospective study to gather worldwide experiences with bilateral pallidal deep brain stimulation in patients with neurodegeneration with brain iron accumulation. A total of 16 centres contributed 23 patients with confirmed neurodegeneration with brain iron accumulation and bilateral pallidal deep brain stimulation. Patient details including gender, age at onset, age at operation, genetic status, magnetic resonance imaging status, history and clinical findings were requested. Data on severity of dystonia (Burke Fahn Marsden Dystonia Rating Scale—Motor Scale, Barry Albright Dystonia Scale), disability (Burke Fahn Marsden Dystonia Rating Scale—Disability Scale), quality of life (subjective global rating from 1 to 10 obtained retrospectively from patient and caregiver) as well as data on supportive therapy, concurrent pharmacotherapy, stimulation settings, adverse events and side effects were collected. Data were collected once preoperatively and at 2–6 and 9–15 months postoperatively. The primary outcome measure was change in severity of dystonia. The mean improvement in severity of dystonia was 28.5% at 2–6 months and 25.7% at 9–15 months. At 9–15 months postoperatively, 66.7% of patients showed an improvement of 20% or more in severity of dystonia, and 31.3% showed an improvement of 20% or more in disability. Global quality of life ratings showed a median improvement of 83.3% at 9–15 months. Severity of dystonia preoperatively and disease duration predicted improvement in severity of dystonia at 2–6 months; this failed to reach significance at 9–15 months. The study confirms that dystonia in neurodegeneration with brain iron accumulation improves with bilateral pallidal deep brain stimulation, although this improvement is not as great as the benefit reported in patients with primary generalized dystonias or some other secondary dystonias. The patients with more severe dystonia seem to benefit more. A well-controlled, multi-centre prospective study is necessary to enable evidence-based therapeutic decisions and better predict therapeutic outcomes

    Circadian Consequence of Socio-Sexual Interactions in Fruit Flies Drosophila melanogaster

    Get PDF
    In fruit flies Drosophila melanogaster, courtship is an elaborate ritual comprising chasing, dancing and singing by males to lure females for mating. Courtship interactions peak in the night and heterosexual couples display enhanced nighttime activity. What we do not know is if such socio-sexual interactions (SSI) leave long-lasting after-effects on circadian clock(s). Here we report the results of our study aimed at examining the after-effects of SSI (as a result of co-habitation of males and females in groups) between males and females on their circadian locomotor activity rhythm. Males undergo reduction in the evening activity peak and lengthening of circadian period, while females show a decrease in overall activity. Such after-effects, at least in males, require functional circadian clocks during SSI as loss-of-function clock mutants and wild type flies interacting under continuous light (LL), do not display them. Interestingly, males with electrically silenced Pigment Dispersing Factor (PDF)-positive ventral lateral (LNv) clock neurons continue to show SSI mediated reduction in evening activity peak, suggesting that the LNv clock neurons are dispensable for SSI mediated after-effects on locomotor activity rhythm. Such after-effects in females may not be clock-dependent because clock manipulated females with prior exposure to males show decrease in overall activity, more or less similar to rhythmic wild type females. The expression of SSI mediated after-effects requires a functional olfactory system in males because males with compromised olfactory ability do not display them. These results suggest that SSI causes male-specific, long-lasting changes in the circadian clocks of Drosophila, which requires the presence of functional clocks and intact olfactory ability in males

    Determination of luminosity for in-ring reactions:A new approach for the low-energy domain

    Get PDF
    Luminosity is a measure of the colliding frequency between beam and target and it is a crucial parameter for the measurement of absolute values, such as reaction cross sections. In this paper, we make use of experimental data from the ESR storage ring to demonstrate that the luminosity can be precisely determined by modelling the measured Rutherford scattering distribution. The obtained results are in good agreement with an independent measurement based on the x-ray normalization method. Our new method provides an alternative way to precisely measure the luminosity in low-energy stored-beam configurations. This can be of great value in particular in dedicated low-energy storage rings where established methods are difficult or impossible to apply.Comment: 8 pages, 5 figure
    corecore