152 research outputs found
Avoidability of formulas with two variables
In combinatorics on words, a word over an alphabet is said to
avoid a pattern over an alphabet of variables if there is no
factor of such that where is a
non-erasing morphism. A pattern is said to be -avoidable if there exists
an infinite word over a -letter alphabet that avoids . We consider the
patterns such that at most two variables appear at least twice, or
equivalently, the formulas with at most two variables. For each such formula,
we determine whether it is -avoidable, and if it is -avoidable, we
determine whether it is avoided by exponentially many binary words
Enumerating Abelian Returns to Prefixes of Sturmian Words
We follow the works of Puzynina and Zamboni, and Rigo et al. on abelian
returns in Sturmian words. We determine the cardinality of the set
of abelian returns of all prefixes of a Sturmian word in
terms of the coefficients of the continued fraction of the slope, dependingly
on the intercept. We provide a simple algorithm for finding the set
and we determine it for the characteristic Sturmian words.Comment: 19page
Canonical Representatives of Morphic Permutations
An infinite permutation can be defined as a linear ordering of the set of
natural numbers. In particular, an infinite permutation can be constructed with
an aperiodic infinite word over as the lexicographic order
of the shifts of the word. In this paper, we discuss the question if an
infinite permutation defined this way admits a canonical representative, that
is, can be defined by a sequence of numbers from [0, 1], such that the
frequency of its elements in any interval is equal to the length of that
interval. We show that a canonical representative exists if and only if the
word is uniquely ergodic, and that is why we use the term ergodic permutations.
We also discuss ways to construct the canonical representative of a permutation
defined by a morphic word and generalize the construction of Makarov, 2009, for
the Thue-Morse permutation to a wider class of infinite words.Comment: Springer. WORDS 2015, Sep 2015, Kiel, Germany. Combinatorics on
Words: 10th International Conference. arXiv admin note: text overlap with
arXiv:1503.0618
Detecting One-variable Patterns
Given a pattern such that
, where is a
variable and its reversal, and
are strings that contain no variables, we describe an
algorithm that constructs in time a compact representation of all
instances of in an input string of length over a polynomially bounded
integer alphabet, so that one can report those instances in time.Comment: 16 pages (+13 pages of Appendix), 4 figures, accepted to SPIRE 201
Subexponential estimations in Shirshov's height theorem (in English)
In 1993 E. I. Zelmanov asked the following question in Dniester Notebook:
"Suppose that F_{2, m} is a 2-generated associative ring with the identity
x^m=0. Is it true, that the nilpotency degree of F_{2, m} has exponential
growth?" We show that the nilpotency degree of l-generated associative algebra
with the identity x^d=0 is smaller than Psi(d,d,l), where Psi(n,d,l)=2^{18} l
(nd)^{3 log_3 (nd)+13}d^2. We give the definitive answer to E. I. Zelmanov by
this result. It is the consequence of one fact, which is based on combinatorics
of words. Let l, n and d>n be positive integers. Then all the words over
alphabet of cardinality l which length is greater than Psi(n,d,l) are either
n-divided or contain d-th power of subword, where a word W is n-divided, if it
can be represented in the following form W=W_0 W_1...W_n such that W_1 >'
W_2>'...>'W_n. The symbol >' means lexicographical order here. A. I. Shirshov
proved that the set of non n-divided words over alphabet of cardinality l has
bounded height h over the set Y consisting of all the words of degree <n.
Original Shirshov's estimation was just recursive, in 1982 double exponent was
obtained by A.G.Kolotov and in 1993 A.Ya.Belov obtained exponential estimation.
We show, that h<Phi(n,l), where Phi(n,l) = 2^{87} n^{12 log_3 n + 48} l. Our
proof uses Latyshev idea of Dilworth theorem application.Comment: 21 pages, Russian version of the article is located at the link
arXiv:1101.4909; Sbornik: Mathematics, 203:4 (2012), 534 -- 55
Palindromic complexity of trees
We consider finite trees with edges labeled by letters on a finite alphabet
. Each pair of nodes defines a unique labeled path whose trace is a
word of the free monoid . The set of all such words defines the
language of the tree. In this paper, we investigate the palindromic complexity
of trees and provide hints for an upper bound on the number of distinct
palindromes in the language of a tree.Comment: Submitted to the conference DLT201
On the maximal number of cubic subwords in a string
We investigate the problem of the maximum number of cubic subwords (of the
form ) in a given word. We also consider square subwords (of the form
). The problem of the maximum number of squares in a word is not well
understood. Several new results related to this problem are produced in the
paper. We consider two simple problems related to the maximum number of
subwords which are squares or which are highly repetitive; then we provide a
nontrivial estimation for the number of cubes. We show that the maximum number
of squares such that is not a primitive word (nonprimitive squares) in
a word of length is exactly , and the
maximum number of subwords of the form , for , is exactly .
In particular, the maximum number of cubes in a word is not greater than
either. Using very technical properties of occurrences of cubes, we improve
this bound significantly. We show that the maximum number of cubes in a word of
length is between and . (In particular, we improve the
lower bound from the conference version of the paper.)Comment: 14 page
Hopf algebras and Markov chains: Two examples and a theory
The operation of squaring (coproduct followed by product) in a combinatorial
Hopf algebra is shown to induce a Markov chain in natural bases. Chains
constructed in this way include widely studied methods of card shuffling, a
natural "rock-breaking" process, and Markov chains on simplicial complexes.
Many of these chains can be explictly diagonalized using the primitive elements
of the algebra and the combinatorics of the free Lie algebra. For card
shuffling, this gives an explicit description of the eigenvectors. For
rock-breaking, an explicit description of the quasi-stationary distribution and
sharp rates to absorption follow.Comment: 51 pages, 17 figures. (Typographical errors corrected. Further fixes
will only appear on the version on Amy Pang's website, the arXiv version will
not be updated.
Online Algorithms on Antipowers and Antiperiods
The definition of antipower introduced by Fici et al. (ICALP 2016) captures the notion of being the opposite of a power: a sequence of k pairwise distinct blocks of the same length. Recently, Alamro et al. (CPM 2019) defined a string to have an antiperiod if it is a prefix of an antipower, and gave complexity bounds for the offline computation of the minimum antiperiod and all the antiperiods of a word. In this paper, we address the same problems in the online setting. Our solutions rely on new arrays that compactly and incrementally store antiperiods and antipowers as the word grows, obtaining in the process this information for all the word’s prefixes. We show how to compute those arrays online in O(n log n) space, O(n log n) time, and o(n^epsilon) delay per character, for any constant epsilon > 0. Running times are worst-case and hold with high probability. We also discuss more space-efficient solutions returning the correct result with high probability, and small data structures to support random access to those arrays
The complexity of tangent words
In a previous paper, we described the set of words that appear in the coding
of smooth (resp. analytic) curves at arbitrary small scale. The aim of this
paper is to compute the complexity of those languages.Comment: In Proceedings WORDS 2011, arXiv:1108.341
- …
