10,735 research outputs found

    E 0336-248 : A New BL Lac Object Found by an Old Einstein

    Get PDF
    We obtained new ROSAT HRI and optical observations in the field of the Einstein X-ray source E 0336-248, which we use to identify it as a 19th magnitude BL Lacertae object at z=0.251 with an X-ray luminosity of 10^45 erg/s. It is also a 14 mJy radio source at 20 cm. An emission-line galaxy at z=0.043 that was previously considered a Seyfert identification for E 0336-248 is shown instead to be an unrelated, non-active H II region galaxy that lies 78 arcseconds from the X-ray source. The resolution of this historical case of mistaken identity illustrates that discoveries of non-AGN emission-line galaxies with high X-ray luminosity should be tested carefully. The properties of E 0336-248 are similar to those of other X-ray selected BL Lacs, including its location in an apparent group or cluster of galaxies. Somewhat unusual is the weak contribution of nonstellar optical light relative to the starlight in the spectrum of its host galaxy, which raises once again the possibility that even high-luminosity BL Lac objects may be difficult to identify in X-ray selected samples. We discuss a possible manifestation of this problem that appeared in the recent literature.Comment: To appear in the Astronomical Journal. 8 pages including figures (uses psfig.tex, also included

    Stratospheric Variability and Trends in Models Used for the IPCC AR4

    Get PDF
    Atmosphere and ocean general circulation model (AOGCM) experiments for the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) are analyzed to better understand model variability and assess the importance of various forcing mechanisms on stratospheric trends during the 20th century. While models represent the climatology of the stratosphere reasonably well in comparison with NCEP reanalysis, there are biases and large variability among models. In general, AOGCMs are cooler than NCEP throughout the stratosphere, with the largest differences in the tropics. Around half the AOGCMs have a top level beneath ~2 hPa and show a significant cold bias in their upper levels (~10 hPa) compared to NCEP, suggesting that these models may have compromised simulations near 10 hPa due to a low model top or insufficient stratospheric levels. In the lower stratosphere (50 hPa), the temperature variability associated with large volcanic eruptions is absent in about half of the models, and in the models that do include volcanic aerosols, half of those significantly overestimate the observed warming. There is general agreement on the vertical structure of temperature trends over the last few decades, differences between models are explained by the inclusion of different forcing mechanisms, such as stratospheric ozone depletion and volcanic aerosols. However, even when human and natural forcing agents are included in the simulations, significant differences remain between observations and model trends, particularly in the upper tropical troposphere (200 hPa–100 hPa), where, since 1979, models show a warming trend and the observations a cooling trend

    Finite Temperature Spectral Densities of Momentum and R-Charge Correlators in N=4\N=4 Yang Mills Theory

    Full text link
    We compute spectral densities of momentum and R-charge correlators in thermal N=4\N=4 Yang Mills at strong coupling using the AdS/CFT correspondence. For ωT\omega \sim T and smaller, the spectral density differs markedly from perturbation theory; there is no kinetic theory peak. For large ω\omega, the spectral density oscillates around the zero-temperature result with an exponentially decreasing amplitude. Contrast this with QCD where the spectral density of the current-current correlator approaches the zero temperature result like (T/ω)4(T/\omega)^4. Despite these marked differences with perturbation theory, in Euclidean space-time the correlators differ by only 10\sim 10% from the free result. The implications for Lattice QCD measurements of transport are discussed.Comment: 18 pages, 3 figure

    The size-star formation relation of massive galaxies at 1.5<z<2.5

    Full text link
    We study the relation between size and star formation activity in a complete sample of 225 massive (M > 5 x 10^10 Msun) galaxies at 1.5<z<2.5, selected from the FIREWORKS UV-IR catalog of the CDFS. Based on stellar population synthesis model fits to the observed restframe UV-NIR SEDs, and independent MIPS 24 micron observations, 65% of galaxies are actively forming stars, while 35% are quiescent. Using sizes derived from 2D surface brightness profile fits to high resolution (FWHM_{PSF}~0.45 arcsec) groundbased ISAAC data, we confirm and improve the significance of the relation between star formation activity and compactness found in previous studies, using a large, complete mass-limited sample. At z~2, massive quiescent galaxies are significantly smaller than massive star forming galaxies, and a median factor of 0.34+/-0.02 smaller than galaxies of similar mass in the local universe. 13% of the quiescent galaxies are unresolved in the ISAAC data, corresponding to sizes <1 kpc, more than 5 times smaller than galaxies of similar mass locally. The quiescent galaxies span a Kormendy relation which, compared to the relation for local early types, is shifted to smaller sizes and brighter surface brightnesses and is incompatible with passive evolution. The progenitors of the quiescent galaxies, were likely dominated by highly concentrated, intense nuclear star bursts at z~3-4, in contrast to star forming galaxies at z~2 which are extended and dominated by distributed star formation.Comment: 6 pages, 4 figures, accepted for publication in Ap

    The Detection of Outflows in the IR-Quiet Molecular Core NGC 6334 I(North)

    Full text link
    We find strong evidence for outflows originating in the dense molecular core NGC 6334 I(North): a 1000 Msol molecular core distinguished by its lack of HII regions and mid-IR emission. New observations were obtained of the SiO 2-1 and 5-4 lines with the SEST 15-m telescope and the H2 (1-0) S(1) line with the ESO 2.2-m telescope. The line profiles of the SiO transitions show broad wings extending from -50 to 40 km/s, and spatial maps of the line wing emission exhibit a bipolar morphology with the peaks of the red and blue wing separated by 30". The estimated mass loss rate of the outflow is comparable to those for young intermediate to high-mass stars. The near-IR images show eight knots of H2 emission. Five of the knots form a linear chain which is displaced from the axis of the SiO outflow; these knots may trace shock excited gas along the path of a second, highly collimated outflow. We propose that I(N) is a rare example of a molecular core in an early stage of cluster formation.Comment: 4 pages, LaTeX, 3 ps figures, accepted by ApJ

    Spin Pumping of Current in Non-Uniform Conducting Magnets

    Get PDF
    Using irreversible thermodynamics we show that current-induced spin transfer torque within a magnetic domain implies spin pumping of current within that domain. This has experimental implications for samples both with conducting leads and that are electrically isolated. These results are obtained by deriving the dynamical equations for two models of non-uniform conducting magnets: (1) a generic conducting magnet, with net conduction electron density n and net magnetization M\vec{M}; and (2) a two-band magnet, with up and down spins each providing conduction and magnetism. For both models, in regions where the equilibrium magnetization is non-uniform, voltage gradients can drive adiabatic and non-adiabatic bulk spin torques. Onsager relations then ensure that magnetic torques likewise drive adiabatic and non-adiabatic currents -- what we call bulk spin pumping. For a given amount of adiabatic and non-adiabatic spin torque, the two models yield similar but distinct results for the bulk spin pumping, thus distinguishing the two models. As in the recent spin-Berry phase study by Barnes and Maekawa, we find that within a domain wall the ratio of the effective emf to the magnetic field is approximately given by P(2μB/e)P(2\mu_{B}/e), where P is the spin polarization. The adiabatic spin torque and spin pumping terms are shown to be dissipative in nature.Comment: 13 pages in pdf format; 1 figur

    Fractional Operators, Dirichlet Averages, and Splines

    Full text link
    Fractional differential and integral operators, Dirichlet averages, and splines of complex order are three seemingly distinct mathematical subject areas addressing different questions and employing different methodologies. It is the purpose of this paper to show that there are deep and interesting relationships between these three areas. First a brief introduction to fractional differential and integral operators defined on Lizorkin spaces is presented and some of their main properties exhibited. This particular approach has the advantage that several definitions of fractional derivatives and integrals coincide. We then introduce Dirichlet averages and extend their definition to an infinite-dimensional setting that is needed to exhibit the relationships to splines of complex order. Finally, we focus on splines of complex order and, in particular, on cardinal B-splines of complex order. The fundamental connections to fractional derivatives and integrals as well as Dirichlet averages are presented

    I.V. MIDAZOLAM AS AN INDUCTION AGENT FOR ANAESTHESIA: A STUDY IN VOLUNTEERS

    Get PDF
    The central nervous and cardiovascular effects of midazolam 0.15 mg kg−1 were studied in 20 healthy, unpremedicated volunteers (10 male and 10 female). No important side-effects were noted and the venous tolerance to midazolam was excellent. Three minutes after injection mean systolic arterial pressure decreased from 121±(SEM) 2 mm Hg to 115±(SEM) 2 mm Hg and diastolic pressure from 78±2 to 70±2 mm Hg (P <0.05), and these effects persisted for at least 20 mm. Heart rate increased from 77±4 beat mm−1 to 90±3 and 88±3 beat mm−1 1 and 3 mm after the injection (P <0.05). Anterograde amnesia (40±3 min duration) and drowsiness (lasting 128±23 mm) were observed in all subjects. Loss of the eyelash reflex and apnoea were observed more often in the male group than in the female subjects. Midazolam 0.15 mg kg−1 was not sufficient to induce anaesthesia reliably in healthy unpretnedicated volunteer

    Heat transport of clean spin-ladders coupled to phonons: Umklapp scattering and drag

    Full text link
    We study the low-temperature heat transport in clean two-leg spin ladder compounds coupled to three-dimensional phonons. We argue that the very large heat conductivities observed in such systems can be traced back to the existence of approximate symmetries and corresponding weakly violated conservation laws of the effective (gapful) low--energy model, namely pseudo-momenta. Depending on the ratios of spin gaps and Debye energy and on the temperature, the magnetic contribution to the heat conductivity can be positive or negative, and exhibit an activated or anti-activated behavior. In most regimes, the magnetic heat conductivity is dominated by the spin-phonon drag: the excitations of the two subsystems have almost the same drift velocity, and this allows for an estimate of the ratio of the magnetic and phononic contributions to the heat conductivity.Comment: revised version, 8 pages, 3 figures, added appendi
    corecore