6,232 research outputs found

    Rank Maximal Matchings -- Structure and Algorithms

    Full text link
    Let G = (A U P, E) be a bipartite graph where A denotes a set of agents, P denotes a set of posts and ranks on the edges denote preferences of the agents over posts. A matching M in G is rank-maximal if it matches the maximum number of applicants to their top-rank post, subject to this, the maximum number of applicants to their second rank post and so on. In this paper, we develop a switching graph characterization of rank-maximal matchings, which is a useful tool that encodes all rank-maximal matchings in an instance. The characterization leads to simple and efficient algorithms for several interesting problems. In particular, we give an efficient algorithm to compute the set of rank-maximal pairs in an instance. We show that the problem of counting the number of rank-maximal matchings is #P-Complete and also give an FPRAS for the problem. Finally, we consider the problem of deciding whether a rank-maximal matching is popular among all the rank-maximal matchings in a given instance, and give an efficient algorithm for the problem

    Moir\'e patterns in quantum images

    Get PDF
    We observed moir\'e fringes in spatial quantum correlations between twin photons generated by parametric down-conversion. Spatially periodic structures were nonlocally superposed giving rise to beat frequencies typical of moir\'e patterns. This result brings interesting perspectives regarding metrological applications of such a quantum optical setup.Comment: 4 pages, 5 figure

    Integer programming methods for special college admissions problems

    Get PDF
    We develop Integer Programming (IP) solutions for some special college admission problems arising from the Hungarian higher education admission scheme. We focus on four special features, namely the solution concept of stable score-limits, the presence of lower and common quotas, and paired applications. We note that each of the latter three special feature makes the college admissions problem NP-hard to solve. Currently, a heuristic based on the Gale-Shapley algorithm is being used in the application. The IP methods that we propose are not only interesting theoretically, but may also serve as an alternative solution concept for this practical application, and also for other ones

    A Determination of the Lambda Parameter from Full Lattice QCD

    Get PDF
    We present a determination of the QCD parameter Lambda in the quenched approximation (n_f=0) and for two flavours (n_f=2) of light dynamical quarks. The calculations are performed on the lattice using O(a) improved Wilson fermions and include taking the continuum limit. We find Lambda_{n_f=0} = 259(1)(20) MeV and Lambda_{n_f=2} = 261(17)(26) MeV}, using r_0 = 0.467 fm to set the scale. Extrapolating our results to five flavours, we obtain for the running coupling constant at the mass of the Z boson alpha_s(m_Z) = 0.112(1)(2). All numbers refer to the MSbar scheme.Comment: 25 pages, 9 figure

    Manipulation Strategies for the Rank Maximal Matching Problem

    Full text link
    We consider manipulation strategies for the rank-maximal matching problem. In the rank-maximal matching problem we are given a bipartite graph G=(AP,E)G = (A \cup P, E) such that AA denotes a set of applicants and PP a set of posts. Each applicant aAa \in A has a preference list over the set of his neighbours in GG, possibly involving ties. Preference lists are represented by ranks on the edges - an edge (a,p)(a,p) has rank ii, denoted as rank(a,p)=irank(a,p)=i, if post pp belongs to one of aa's ii-th choices. A rank-maximal matching is one in which the maximum number of applicants is matched to their rank one posts and subject to this condition, the maximum number of applicants is matched to their rank two posts, and so on. A rank-maximal matching can be computed in O(min(cn,n)m)O(\min(c \sqrt{n},n) m) time, where nn denotes the number of applicants, mm the number of edges and cc the maximum rank of an edge in an optimal solution. A central authority matches applicants to posts. It does so using one of the rank-maximal matchings. Since there may be more than one rank- maximal matching of GG, we assume that the central authority chooses any one of them randomly. Let a1a_1 be a manipulative applicant, who knows the preference lists of all the other applicants and wants to falsify his preference list so that he has a chance of getting better posts than if he were truthful. In the first problem addressed in this paper the manipulative applicant a1a_1 wants to ensure that he is never matched to any post worse than the most preferred among those of rank greater than one and obtainable when he is truthful. In the second problem the manipulator wants to construct such a preference list that the worst post he can become matched to by the central authority is best possible or in other words, a1a_1 wants to minimize the maximal rank of a post he can become matched to

    Fixed Point Action and Topology in the CP^3 Model

    Get PDF
    We define a fixed point action in two-dimensional lattice CPN1{\rm CP}^{N-1} models. The fixed point action is a classical perfect lattice action, which is expected to show strongly reduced cutoff effects in numerical simulations. Furthermore, the action has scale-invariant instanton solutions, which enables us to define a correct topological charge without topological defects. Using a parametrization of the fixed point action for the CP3{\rm CP}^{3} model in a Monte Carlo simulation, we study the topological susceptibility.Comment: 27 pages, 5 figures, typeset using REVTEX, Sec. 6 rewritten (additional numerical results), to be published in Phys.Rev.

    Matching Dynamics with Constraints

    Full text link
    We study uncoordinated matching markets with additional local constraints that capture, e.g., restricted information, visibility, or externalities in markets. Each agent is a node in a fixed matching network and strives to be matched to another agent. Each agent has a complete preference list over all other agents it can be matched with. However, depending on the constraints and the current state of the game, not all possible partners are available for matching at all times. For correlated preferences, we propose and study a general class of hedonic coalition formation games that we call coalition formation games with constraints. This class includes and extends many recently studied variants of stable matching, such as locally stable matching, socially stable matching, or friendship matching. Perhaps surprisingly, we show that all these variants are encompassed in a class of "consistent" instances that always allow a polynomial improvement sequence to a stable state. In addition, we show that for consistent instances there always exists a polynomial sequence to every reachable state. Our characterization is tight in the sense that we provide exponential lower bounds when each of the requirements for consistency is violated. We also analyze matching with uncorrelated preferences, where we obtain a larger variety of results. While socially stable matching always allows a polynomial sequence to a stable state, for other classes different additional assumptions are sufficient to guarantee the same results. For the problem of reaching a given stable state, we show NP-hardness in almost all considered classes of matching games.Comment: Conference Version in WINE 201

    A determination of the strange quark mass for unquenched clover fermions using the AWI

    Get PDF
    Using the O(a) Symanzik improved action an estimate is given for the strange quark mass for unquenched (nf=2) QCD. The determination is via the axial Ward identity (AWI) and includes a non-perturbative evaluation of the renormalisation constant. Numerical results have been obtained at several lattice spacings, enabling the continuum limit to be taken. Results indicate a value for the strange quark mass (in the MSbar-scheme at a scale of 2GeV) in the range 100 - 130MeV.Comment: 6 pages, contribution to Lattice2005(Hadron spectrum and quark masses), uses PoS.cl

    Socially stable matchings in the hospitals / residents problem

    Get PDF
    In the Hospitals/Residents (HR) problem, agents are partitioned into hospitals and residents. Each agent wishes to be matched to an agent in the other set and has a strict preference over these potential matches. A matching is stable if there are no blocking pairs, i.e., no pair of agents that prefer each other to their assigned matches. Such a situation is undesirable as it could lead to a deviation in which the blocking pair form a private arrangement outside the matching. This however assumes that the blocking pair have social ties or communication channels to facilitate the deviation. Relaxing the stability definition to take account of the potential lack of social ties between agents can yield larger stable matchings. In this paper, we define the Hospitals/Residents problem under Social Stability (HRSS) which takes into account social ties between agents by introducing a social network graph to the HR problem. Edges in the social network graph correspond to resident-hospital pairs in the HR instance that know one another. Pairs that do not have corresponding edges in the social network graph can belong to a matching M but they can never block M. Relative to a relaxed stability definition for HRSS, called social stability, we show that socially stable matchings can have different sizes and the problem of finding a maximum socially stable matching is NP-hard, though approximable within 3/2. Furthermore we give polynomial time algorithms for three special cases of the problem
    corecore