99 research outputs found
Recommended from our members
[Ge<sub>2</sub>]<sup>4−</sup>Dumbbells with Very Short Ge−Ge Distances in the Zintl Phase Li<sub>3</sub>NaGe<sub>2</sub>: A Solid-State Equivalent to Molecular O<sub>2</sub>
The novel ternary Zintl phase Li3NaGe2 comprises alkali-metal cations and [Ge2]4− dumbbells. The diatomic [Ge2]4− unit is characterized by the shortest Ge−Ge distance (2.390(1) Å) ever observed in a Zintl phase and thus represents the first Ge=Ge double bond under such conditions, as also suggested by the (8−N) rule. Raman measurements support these findings. The multiple-bond character is confirmed by electronic-structure calculations, and an upfield 6Li NMR shift of −10.0 ppm, which was assigned to the Li cations surrounded by the π systems of three Ge dumbbells, further underlines this interpretation. For the unperturbed, ligand-free dumbbell in Li3NaGe2, the π- bonding py and pz orbitals are degenerate as in molecular oxygen, which has singly occupied orbitals. The partially filled π-type bands of the neat solid Li3NaGe2 cross the Fermi level, resulting in metallic properties. Li3NaGe2 was synthesized from the elements as well as from binary reactants and subsequently characterized crystallographically.O.P. acknowledges
support from a Marie Skłodowska-Curie Individual Fellowship.
L.M.S. is further grateful to the Fonds der Chemischen Industrie
and the Studienstiftung des deutschen Volkes for her fellowships.
A.J.K. gratefully acknowledges funding from the Alfred Kordelin
Foundation and computational resources from CSC – the Finnish
IT Center for Science.This is the accepted manuscript. The final version is available at http://onlinelibrary.wiley.com/wol1/doi/10.1002/ange.201508044/abstract
Solid-state 31P NMR spectroscopy of bacteriophage M13 and tobacco mosaic virus
In this thesis, the results of various 31P NMR experiments observed for intact virus particles of bacteriophage M13 and Tobacco Mosaic Virus (TMV), are presented. To explain the results in a consistent way, models are developed and tested. 31P nuclei in M13 and TMV are only present in the phosphodiesters of the encapsulated nucleic acid molecule. Therefore, 31P NMR spectroscopy reveals structural and dynamic properties of the nucleic acid backbone selectively without isotope labeling, even though the virus particles largely consist of coat proteins. In the Introduction (Chapter 1), it is discussed that the 31P chemical shift is sensitive to local nucleic acid backbone geometry and that the 31P NMR relaxation is dependent on the isolated and collective backbone motions. As shown in Chapter 3, high-power 1H-decoupled one-dimensional 31P NMR spectra observed for nonspinning samples of M13 and TMV contain a single, broad line dominated by the 31P chemical shift anisotropy (CSA), which masks any structural inequivalence among the encapsulated phosphodiesters. However, these spectra do contain interesting mobility information. On the one hand, they show that the nucleic acid molecule in each of the viruses is strongly immobilized in comparison to free nucleic acids in solution, as a result of interactions with the protein coat. On the other hand, the 31P resonance lineshapes; show clear signs of motional narrowing, which is indicative for (restricted) motion with frequencies in the order of the static linewidth or larger (≥10 4Hz). In contrast, the nonspinning 31P transversal relaxation measured for M13 indicates motion in the slow or intermediate frequency region as compared to the static linewidth (≤10 4Hz), because T 2e becomes shorter as the viscosity of the gel decreasesTo analyze the results in a more quantitative manner, three different rotational diffusion models for the phosphorus motion are developed in Chapter 2. These models are first tested at a theoretical level to get a feeling for their accuracy and to check their correspondence with standard theories under appropriate limiting conditions. Simulations show that a clear distinction between the effect of motional amplitude and frequency cannot be made within experimental error on the basis of one-dimensional spectra or transversal relaxation alone. However, these parameters can be extracted from the combined data. For fast motions, the transversal 31P NMR relaxation predicted by our models is consistent with standard Redfield relaxation theory. The relaxation effects caused by ultraslow rotational diffusion closely resemble the effects of translational diffusion of water protons in an inhomogeneous magnetic-field gradient. It is discussed in Chapter 3, that simple models, like isotropic and rigid-rod diffusion cannot reproduce the experimental data. Instead, a consistent description is offered by a combined diffusion model, in which the 31P NMR lineshape is dominated by fast internal DNA or RNA motions, and transversal relaxation reflects slow overall rotation of the rod-shaped virions about their length axis.To obtain more specific structural information, magic angle spinning (MAS) NMR spectroscopy is employed, which breaks up the broad 31P NMR lineshape into a sharp centerband at the isotropic chemical shift position flanked by rotational sidebands (Chapter 4). MAS 31P NMR spectra of TMV show two resolved sideband patterns with an overall intensity ratio of approximately 2, which are assigned to the three types of phosphodiesters in TMV on the basis of RO-P-OR' bondangles and supposed arginine bonding effects. In contrast, MAS 31P NMR spectra of M13, only contain a single, relatively broad centerband flanked by sidebands, indicating that a continuous distribution of phosphodiester conformations, rather than a few distinguishable, exists within the phage. The observed decrease of inhomogeneous linewidth at increasing temperature and hydration could perhaps be caused by some sort of "conformational averaging" as a consequence of nucleic acid backbone motion. This is illustrated by use of a simple model, which shows the lineshape effects caused by fast restricted fluctuation of the dihedral angles between the POC and the OCH planes on both sides of the 31P nucleus in the nucleic acid backbone. The presence of internal phosphodiester motions with frequencies ≥10 5Hz, as concluded from the motional narrowing of nonspinning 31P NMR lineshapes in Chapter 3, is confirmed by the deviation of sideband intensities in MAS 31P NMR spectra of dilute M13 gels from the theoretical values for solid powders. No dramatic broadening of the sidebands is observed, indicating that motions with frequencies in the order of the spinning rates applied (10 3Hz) are absent. Backbone motions also seem to be the main cause of transversal relaxation measured at spinning rates of 4 kHz or higher. At spinning rates below 2 kHz, transversal relaxation is significantly faster. This dependence of T 2e on the spinning rate is assigned to slow, overall rotation of the rod-shaped M13 phage about its length axis.Both nonspinning and MAS 31P NMR spectra are analyzed in Chapter 2 and 3, respectively, to study possible mobility differences among the phosphodiesters in M13 and TMV. The nonspinning lineshape of 30% TMV is best simulated, if it is assumed that one of the three binding sites is more mobile than the other two. It is shown that this is compatible with the reduced CSA reflected by the major sideband pattern in MAS spectra of TMV as compared to the minor one. A large mobility of one of the three binding sites would agree with structural models based on x-ray diffraction data, in which two of the binding sites are interacting with arginine residues, whereas no arginine is close to the third one. Two-component analysis of the nonspinning 31P NMR data of 30% M13 suggests that the encapsulated DNA molecule perhaps contains 83% immobile and 17% mobile phosphodiesters. This would shed new light on the nonintegral ratio 2.4:1 between the number of nucleotides and protein coat subunits in the phage: if 83% of the viral DNA is less mobile, the binding of the DNA molecule to the protein coat would actually occur at the integral ratio of two nucleotides per protein subunit. However, MAS NMR spectra provide no additional evidence for such a two-component model.Finally, in Chapter 5, the slow overall motion of M13 and TMV is investigated using 2D-exchange 31P NMR spectroscopy. 2D-exchange 31P NMR spectra recorded for TMV with mixing times t m ≤1 sec do not show any offdiagonal broadening indicating that the value of 3 Hz for the overall motion of TMV determined in Chapter 3 from nonspinning transversal relaxation, is an overestimation. For 30% M13, a log-Gaussian distribution around 25 Hz of coefficients mainly spread between 1 and 10 3Hz must be introduced to reproduce the 2D-exchange spectra recorded at various mixing times in a consistent way. Motional inhomogeneity in gels of M13 is probably caused by the tendency of the bacteriophages in solutions to form variously sized aggregates. Taking the same coefficient distribution and a minor relaxation contribution caused by fast backbone motion into account, nonspinning transversal relaxation can even be better simulated for inhomogeneous overall motion, than it was done for homogeneous motion in Chapter 3. The shrinking of the σ 22 -discontinuity on the diagonal with respect to the lineshape as a whole for t m ≥0.1 sec, cannot be explained by slow overall motion, but seems to be caused by restricted spindiffusion between 31P nuclei with chemical shifts that differ less than 1 ppm
Hybrid Mechanical Systems
We discuss hybrid systems in which a mechanical oscillator is coupled to
another (microscopic) quantum system, such as trapped atoms or ions,
solid-state spin qubits, or superconducting devices. We summarize and compare
different coupling schemes and describe first experimental implementations.
Hybrid mechanical systems enable new approaches to quantum control of
mechanical objects, precision sensing, and quantum information processing.Comment: To cite this review, please refer to the published book chapter (see
Journal-ref and DOI). This v2 corresponds to the published versio
Modelling amorphous materials via a joint solid-state NMR and X-ray absorption spectroscopy and DFT approach:application to alumina
Understanding a material's electronic structure is crucial to the development of many functional devices from semiconductors to solar cells and Li-ion batteries. A material's properties, including electronic structure, are dependent on the arrangement of its atoms. However, structure determination (the process of uncovering the atomic arrangement), is impeded, both experimentally and computationally, by disorder. The lack of a verifiable atomic model presents a huge challenge when designing functional amorphous materials. Such materials may be characterised through their local atomic environments using, for example, solid-state NMR and XAS. By using these two spectroscopy methods to inform the sampling of configurations from ab initio molecular dynamics we devise and validate an amorphous model, choosing amorphous alumina to illustrate the approach due to its wide range of technological uses. Our model predicts two distinct geometric environments of AlO5 coordination polyhedra and determines the origin of the pre-edge features in the Al K-edge XAS. From our model we construct an average electronic density of states for amorphous alumina, and identify localized states at the conduction band minimum (CBM). We show that the presence of a pre-edge peak in the XAS is a result of transitions from the Al 1s to Al 3s states at the CBM. Deconvoluting this XAS by coordination geometry reveals contributions from both AlO4 and AlO5 geometries at the CBM give rise to the pre-edge, which provides insight into the role of AlO5 in the electronic structure of alumina. This work represents an important advance within the field of solid-state amorphous modelling, providing a method for developing amorphous models through the comparison of experimental and computationally derived spectra, which may then be used to determine the electronic structure of amorphous materials
Text mining assisted review of the literature on Li-O2 batteries
The high theoretical capacity of Li-O2 batteries attracts a lot of attention and this field has expanded significantly in the last two decades. In a more general way, the large number of articles being published daily makes it difficult for researchers to keep track of the progress in science. Here we develop a text mining program in an attempt to facilitate the process of reviewing the literature published in a scientific field and apply it to Li-O2 batteries. We analyze over 1800 articles and use the text mining program to extract reported discharge capacities, for the first time, which allows us to show the clear progress made in recent years. In this paper, we focus on three main challenges of Li-O2 batteries, namely the stability-cyclability, the low practical capacity and the rate capability. Indeed, according to our text mining program, articles dealing with these issues represent 86% of the literature published in the field. For each topic, we provide a bibliometric analysis of the literature before focusing on a few key articles which allow us to get insights into the physics and chemistry of such systems. We believe that text mining can help readers find breakthrough papers in a field (e.g. by identifying papers reporting much higher performances) and follow the developments made at the state of the art (e.g. by showing trends in the numbers of papers published—a decline in a given topic probably being the sign of limitations). With the progress of text mining algorithms in the future, the process of reviewing a scientific field is likely to become more and more automated, making it easier for researchers to get the 'big picture' in an unfamiliar scientific field
Importance of Incorporating Explicit 3D-Resolved Electrode Mesostructures in Li–O2 Battery Models
Lithium-oxygen batteries are attractive for reversible energy storage because of their theoretically high capacities. Practically, high capacities are challenging to achieve due to key issues such as the transport and growth of the Li2O2 discharge product. Numerous carbon-based cathode mesostructures have been studied experimentally and computationally aiming to reach higher capacities. One-dimensional continuum models are widely used to study the discharge capacities of electrode mesostructures. Here, we investigate the capabilities and shortcomings of such models to represent different electrode mesostructures, Li2O2 growth mechanisms, and their impact on the discharge performance by comparing them to pore network models which consider an explicit representation of the three-dimensional pore mesostructure. The continuum model can accurately predict discharge capacities when the discharge products grow through surface mechanism, but fails to provide reasonable results when this growth includes a solution mechanism. Conversely, the pore network model results are in agreement with experiments. We attribute the better accuracy of the pore network model to a more accurate representation of the electrode mesostructures, particularly the explicit consideration of the pore interconnectivity. The pore network model allows us to reconcile, within a single theoretical framework, the scattered correlations between discharge capacity and electrode mesostructure descriptors reported in the literature
Recommended from our members
Interactions of Oxide Surfaces with Water Revealed with Solid-State NMR Spectroscopy.
Hydrous materials are ubiquitous in the natural environment and efforts have previously been made to investigate the structures and dynamics of hydrated surfaces for their key roles in various chemical and physical applications, with the help of theoretical modeling and microscopy techniques. However, an overall atomic-scale understanding of the water-solid interface, including the effect of water on surface ions, is still lacking. Herein, we employ ceria nanorods with different amounts of water as an example and demonstrate a new approach to explore the water-surface interactions by using solid-state NMR in combination with density functional theory. NMR shifts and relaxation time analysis provide detailed information on the local structure of oxygen ions and the nature of water motion on the surface: the amount of molecularly adsorbed water decreases rapidly with increasing temperature (from room temperature to 150 °C), whereas hydroxyl groups are stable up to 150 °C, and dynamic water molecules are found to instantaneously coordinate to the surface oxygen ions. The applicability of dynamic nuclear polarization for selective detection of surface oxygen species is also compared to conventional NMR with surface selective isotopic-labeling: the optimal method depends on the feasibility of enrichment and the concentration of protons in the sample. These results provide new insight into the interfacial structure of hydrated oxide nanostructures, which is important to improve performance for various applications
The Effect of Water on Quinone Redox Mediators in Nonaqueous Li-O2 Batteries.
The parasitic reactions associated with reduced oxygen species and the difficulty in achieving the high theoretical capacity have been major issues plaguing development of practical nonaqueous Li-O2 batteries. We hereby address the above issues by exploring the synergistic effect of 2,5-di-tert-butyl-1,4-benzoquinone and H2O on the oxygen chemistry in a nonaqueous Li-O2 battery. Water stabilizes the quinone monoanion and dianion, shifting the reduction potentials of the quinone and monoanion to more positive values (vs Li/Li+). When water and the quinone are used together in a (largely) nonaqueous Li-O2 battery, the cell discharge operates via a two-electron oxygen reduction reaction to form Li2O2, with the battery discharge voltage, rate, and capacity all being considerably increased and fewer side reactions being detected. Li2O2 crystals can grow up to 30 μm, more than an order of magnitude larger than cases with the quinone alone or without any additives, suggesting that water is essential to promoting a solution dominated process with the quinone on discharging. The catalytic reduction of O2 by the quinone monoanion is predominantly responsible for the attractive features mentioned above. Water stabilizes the quinone monoanion via hydrogen-bond formation and by coordination of the Li+ ions, and it also helps increase the solvation, concentration, lifetime, and diffusion length of reduced oxygen species that dictate the discharge voltage, rate, and capacity of the battery. When a redox mediator is also used to aid the charging process, a high-power, high energy density, rechargeable Li-O2 battery is obtained.The authors thank EPSRC-EP/M009521/1 (T.L., G.K., C.P.G.), Innovate UK (T.L.), Darwin Schlumberger Fellowship (T.L.), EU Horizon 2020 GrapheneCore1-No.696656 (G.K., C.P.G.), EPSRC - EP/N024303/1, EP/L019469/1 (N.G.-A., J.T.F.), Royal Society - RG130523 (N.G.-A.), and the European Commission FP7-MC–CIG Funlab, 630162 (N.G.-A.) for research funding
- …
