199 research outputs found
Galactic chemical evolution of heavy elements: from Barium to Europium
We follow the chemical evolution of the Galaxy for elements from Ba to Eu,
using an evolutionary model suitable to reproduce a large set of Galactic
(local and non local) and extragalactic constraints. Input stellar yields for
neutron-rich nuclei have been separated into their s-process and r-process
components. The production of s-process elements in thermally pulsing
asymptotic giant branch stars of low mass proceeds from the combined operation
of two neutron sources: the dominant reaction 13C(alpha,n)16O, which releases
neutrons in radiative conditions during the interpulse phase, and the reaction
22Ne(alpha,n)25Mg, marginally activated during thermal instabilities. The
resulting s-process distribution is strongly dependent on the stellar
metallicity. For the standard model discussed in this paper, it shows a sharp
production of the Ba-peak elements around Z = Z_sun/4. Concerning the r-process
yields, we assume that the production of r-nuclei is a primary process
occurring in stars near the lowest mass limit for Type II supernova
progenitors. The r-contribution to each nucleus is computed as the difference
between its solar abundance and its s-contribution given by the Galactic
chemical evolution model at the epoch of the solar system formation. We compare
our results with spectroscopic abundances of elements from Ba to Eu at various
metallicities (mainly from F and G stars) showing that the observed trends can
be understood in the light of the present knowledge of neutron capture
nucleosynthesis. Finally, we discuss a number of emerging features that deserve
further scrutiny.Comment: 34 pages, 13 figures. accepted by Ap
Brans-Dicke model constrained from Big Bang nucleosynthesis and magnitude redshift relations of Supernovae
The Brans-Dicke model with a variable cosmological term () has
been investigated with use of the coupling constant of .
Parameters inherent in this model are constrained from comparison between Big
Bang nucleosynthesis and the observed abundances. Furthermore, the magnitude
redshift () relations are studied for with and without another
constant cosmological term in a flat universe. Observational data of Type Ia
Supernovae are used in the redshift range of . It is found that our
model with energy density of the constant cosmological term with the value of
0.7 can explain the SNIa observations, though the model parameters are
insensitive to the relation.Comment: Submitted to A&A, 4 pages, 3 figure
Big Bang Nucleosynthesis with Gaussian Inhomogeneous Neutrino Degeneracy
We consider the effect of inhomogeneous neutrino degeneracy on Big Bang
nucleosynthesis for the case where the distribution of neutrino chemical
potentials is given by a Gaussian. The chemical potential fluctuations are
taken to be isocurvature, so that only inhomogeneities in the electron chemical
potential are relevant. Then the final element abundances are a function only
of the baryon-photon ratio , the effective number of additional neutrinos
, the mean electron neutrino degeneracy parameter , and
the rms fluctuation of the degeneracy parameter, . We find that for
fixed , , and , the abundances of helium-4,
deuterium, and lithium-7 are, in general, increasing functions of .
Hence, the effect of adding a Gaussian distribution for the electron neutrino
degeneracy parameter is to decrease the allowed range for . We show that
this result can be generalized to a wide variety of distributions for .Comment: 9 pages, 3 figures, added discussion of neutrino oscillations,
altered presentation of figure
Neutrino Lasing in the Sun
Applying the phenomenon of neutrino lasing in the solar interior, we show how
the rate for the generic neutrino decay process `\nu -> fermion + boson', can
in principal be enhanced by many orders of magnitude over its normal decay
rate. Such a large enhancement could be of import to neutrino-decay models
invoked in response to the apparent deficit of electron neutrinos observed from
the sun. The significance of this result to such models depends on the specific
form of the neutrino decay, and the particle model within which it is embedded.Comment: 12 pages, using ordinary TeX. No figure
Inhomogeneous Big Bang Nucleosynthesis and Mutual Ion Diffusion
We present a study of inhomogeneous big bang nucleosynthesis with emphasis on
transport phenomena. We combine a hydrodynamic treatment to a nuclear reaction
network and compute the light element abundances for a range of inhomogeneity
parameters. We find that shortly after annihilation of electron-positron pairs,
Thomson scattering on background photons prevents the diffusion of the
remaining electrons. Protons and multiply charged ions then tend to diffuse
into opposite directions so that no net charge is carried. Ions with Z>1 get
enriched in the overdense regions, while protons diffuse out into regions of
lower density. This leads to a second burst of nucleosynthesis in the overdense
regions at T<20 keV, leading to enhanched destruction of deuterium and lithium.
We find a region in the parameter space at 2.1E-10<eta<5.2E-10 where
constraints
7Li/H<10^{-9.7} and D/H<10^{-4.4} are satisfied simultaneously.Comment: 9 pages, minor changes to match the PRD versio
The Kr85 s-process Branching and the Mass of Carbon Stars
We present new spectroscopic observations for a sample of C(N)-type red
giants. These objects belong to the class of Asymptotic Giant Branch stars,
experiencing thermal instabilities in the He-burning shell (thermal pulses).
Mixing episodes called third dredge-up enrich the photosphere with newly
synthesized C12 in the He-rich zone, and this is the source of the high
observed ratio between carbon and oxygen (C/O > 1 by number). Our spectroscopic
abundance estimates confirm that, in agreement with the general understanding
of the late evolutionary stages of low and intermediate mass stars, carbon
enrichment is accompanied by the appearance of s-process elements in the
photosphere. We discuss the details of the observations and of the derived
abundances, focusing in particular on rubidium, a neutron-density sensitive
element, and on the s-elements Sr, Y and Zr belonging to the first s-peak. The
critical reaction branching at Kr85, which determines the relative enrichment
of the studied species, is discussed. Subsequently, we compare our data with
recent models for s-processing in Thermally Pulsing Asymptotic Giant Branch
stars, at metallicities relevant for our sample. A remarkable agreement between
model predictions and observations is found. Thanks to the different neutron
density prevailing in low and intermediate mass stars, comparison with the
models allows us to conclude that most C(N) stars are of low mass (M < 3Mo). We
also analyze the C12/C13 ratios measured, showing that most of them cannot be
explained by canonical stellar models. We discuss how this fact would require
the operation of an ad hoc additional mixing, currently called Cool Bottom
Process, operating only in low mass stars during the first ascent of the red
giant branch and, perhaps, also during the asymptotic giant branch.Comment: 54 pages + 6 figures + 6 tables. ApJ accepte
Reconciling Present Neutrino Puzzles: Sterile Neutrinos as Mirror Neutrinos
We suggest that recent neutrino puzzles that are the solar and atmospheric
neutrino deficits as well as the possible neutrino oscillations reported by the
LSND experiment and the possibility of massive neutrinos providing the hot
component of the cosmological dark matter, can all be naturally explained by
assuming existence of a mirror world described by an ``electroweak'' gauge
symmetry , with the breaking scale larger by about factor
of 30 than the scale of the standard model. An interesting
aspect of this model is that the sterile neutrinos arise from the hidden mirror
sector of the theory and thus their lightness is more natural than in the usual
neutrino mass scenarios. The needed pattern of the neutrino mass matrix in this
model is obtained by assuming a conserved ZKM-type global lepton number , which is violated by Planck scale effects. One implication
of our proposal is that bulk of the dark matter in the universe is a warm dark
matter consisting of few KeV mass particles rather than the 100 GeV range
particles of the currently popular cold dark matter scenarios.Comment: 10 pages, Latex, no figure
Disappearing Dark Matter in Brane World Cosmology: New Limits on Noncompact Extra Dimensions
We explore cosmological implications of dark matter as massive particles
trapped on a brane embedded in a Randall-Sundrum noncompact higher dimension
space. It is an unavoidable consequence of this cosmology that massive
particles are metastable and can disappear into the bulk dimension. Here, we
show that a massive dark matter particle (e.g. the lightest supersymmetric
particle) is likely to have the shortest lifetime for disappearing into the
bulk. We examine cosmological constraints on this new paradigm and show that
disappearing dark matter is consistent (at the 95% confidence level) with all
cosmological constraints, i.e. present observations of Type Ia supernovae at
the highest redshift, trends in the mass-to-light ratios of galaxy clusters
with redshift, the fraction of X-ray emitting gas in rich clusters, and the
spectrum of power fluctuations in the cosmic microwave background. A best concordance region is identified corresponding to a mean lifetime for
dark matter disappearance of Gyr. The implication
of these results for brane-world physics is discussed.Comment: 7 pages, 7 figures, new cosmological constraints added, accepted for
publication in PR
Peaks above the Harrison-Zel'dovich spectrum due to the Quark-Gluon to Hadron Transition
The quark-gluon to hadron transition affects the evolution of cosmological
perturbations. If the phase transition is first order, the sound speed vanishes
during the transition, and density perturbations fall freely. This distorts the
primordial Harrison-Zel'dovich spectrum of density fluctuations below the
Hubble scale at the transition. Peaks are produced, which grow at most linearly
in wavenumber, both for the hadron-photon-lepton fluid and for cold dark
matter. For cold dark matter which is kinetically decoupled well before the QCD
transition clumps of masses below are produced.Comment: Extended version, including evolution of density perturbations for a
bag model and for a lattice QCD fit (3 new figures). Spectrum for bag model
(old figure) is available in astro-ph/9611186. 9 pages RevTeX, uses epsf.sty,
3 PS figure
IRAS08281-4850 and IRAS14325-6428: two A-type post-AGB stars with s-process enrichment
One of the puzzling findings in the study of the chemical evolution of
(post-)AGB stars is why very similar stars (in terms of metallicity, spectral
type, infrared properties, etc...) show a very different photospheric
composition. We aim at extending the still limited sample of s-process enriched
post-AGB stars, in order to obtain a statistically large enough sample that
allows us to formulate conclusions concerning the 3rd dredge-up occurrence. We
selected two post-AGB stars on the basis of IR colours indicative of a past
history of heavy mass loss: IRAS08281-4850 and IRAS14325-6428. They are cool
sources in the locus of the Planetary Nebulae (PNe) in the IRAS colour-colour
diagram. Abundances of both objects were derived for the first time on the
basis of high-quality UVES and EMMI spectra, using a critically compiled line
list with accurate log(gf) values, together with the latest Kurucz model
atmospheres. Both objects have very similar spectroscopically defined effective
temperatures of 7750-8000K. They are strongly carbon and s-process enriched,
with a C/O ratio of 1.9 and 1.6, and an [ls/Fe] of +1.7 and +1.2, for IRAS08281
and IRAS14325 resp. Moreover, the spectral energy distributions (SEDs) point to
heavy mass-loss during the preceding AGB phase. IRAS08281 and IRAS14325 are
prototypical post-AGB objects in the sense that they show strong post 3rd
dredge-up chemical enrichments. The neutron irradiation has been extremely
efficient, despite the only mild sub-solar metallicity. This is not conform
with the recent chemical models. The existence of very similar post-AGB stars
without any enrichment emphasizes our poor knowledge of the details of the AGB
nucleosynthesis and dredge-up phenomena. We call for a very systematic chemical
study of all cool sources in the PN region of the IRAS colour-colour diagram.Comment: 8 pages, 6 figures, accepted by A&
- …
