199 research outputs found

    Galactic chemical evolution of heavy elements: from Barium to Europium

    Get PDF
    We follow the chemical evolution of the Galaxy for elements from Ba to Eu, using an evolutionary model suitable to reproduce a large set of Galactic (local and non local) and extragalactic constraints. Input stellar yields for neutron-rich nuclei have been separated into their s-process and r-process components. The production of s-process elements in thermally pulsing asymptotic giant branch stars of low mass proceeds from the combined operation of two neutron sources: the dominant reaction 13C(alpha,n)16O, which releases neutrons in radiative conditions during the interpulse phase, and the reaction 22Ne(alpha,n)25Mg, marginally activated during thermal instabilities. The resulting s-process distribution is strongly dependent on the stellar metallicity. For the standard model discussed in this paper, it shows a sharp production of the Ba-peak elements around Z = Z_sun/4. Concerning the r-process yields, we assume that the production of r-nuclei is a primary process occurring in stars near the lowest mass limit for Type II supernova progenitors. The r-contribution to each nucleus is computed as the difference between its solar abundance and its s-contribution given by the Galactic chemical evolution model at the epoch of the solar system formation. We compare our results with spectroscopic abundances of elements from Ba to Eu at various metallicities (mainly from F and G stars) showing that the observed trends can be understood in the light of the present knowledge of neutron capture nucleosynthesis. Finally, we discuss a number of emerging features that deserve further scrutiny.Comment: 34 pages, 13 figures. accepted by Ap

    Brans-Dicke model constrained from Big Bang nucleosynthesis and magnitude redshift relations of Supernovae

    Full text link
    The Brans-Dicke model with a variable cosmological term (BDΛBD\Lambda) has been investigated with use of the coupling constant of ω=104\omega=10^4. Parameters inherent in this model are constrained from comparison between Big Bang nucleosynthesis and the observed abundances. Furthermore, the magnitude redshift (mzm-z) relations are studied for BDΛBD\Lambda with and without another constant cosmological term in a flat universe. Observational data of Type Ia Supernovae are used in the redshift range of 0.01<z<20.01<z<2. It is found that our model with energy density of the constant cosmological term with the value of 0.7 can explain the SNIa observations, though the model parameters are insensitive to the mzm-z relation.Comment: Submitted to A&A, 4 pages, 3 figure

    Big Bang Nucleosynthesis with Gaussian Inhomogeneous Neutrino Degeneracy

    Full text link
    We consider the effect of inhomogeneous neutrino degeneracy on Big Bang nucleosynthesis for the case where the distribution of neutrino chemical potentials is given by a Gaussian. The chemical potential fluctuations are taken to be isocurvature, so that only inhomogeneities in the electron chemical potential are relevant. Then the final element abundances are a function only of the baryon-photon ratio η\eta, the effective number of additional neutrinos ΔNν\Delta N_\nu, the mean electron neutrino degeneracy parameter ξˉ\bar \xi, and the rms fluctuation of the degeneracy parameter, σξ\sigma_\xi. We find that for fixed η\eta, ΔNν\Delta N_\nu, and ξˉ\bar \xi, the abundances of helium-4, deuterium, and lithium-7 are, in general, increasing functions of σξ\sigma_\xi. Hence, the effect of adding a Gaussian distribution for the electron neutrino degeneracy parameter is to decrease the allowed range for η\eta. We show that this result can be generalized to a wide variety of distributions for ξ\xi.Comment: 9 pages, 3 figures, added discussion of neutrino oscillations, altered presentation of figure

    Neutrino Lasing in the Sun

    Get PDF
    Applying the phenomenon of neutrino lasing in the solar interior, we show how the rate for the generic neutrino decay process `\nu -> fermion + boson', can in principal be enhanced by many orders of magnitude over its normal decay rate. Such a large enhancement could be of import to neutrino-decay models invoked in response to the apparent deficit of electron neutrinos observed from the sun. The significance of this result to such models depends on the specific form of the neutrino decay, and the particle model within which it is embedded.Comment: 12 pages, using ordinary TeX. No figure

    Inhomogeneous Big Bang Nucleosynthesis and Mutual Ion Diffusion

    Full text link
    We present a study of inhomogeneous big bang nucleosynthesis with emphasis on transport phenomena. We combine a hydrodynamic treatment to a nuclear reaction network and compute the light element abundances for a range of inhomogeneity parameters. We find that shortly after annihilation of electron-positron pairs, Thomson scattering on background photons prevents the diffusion of the remaining electrons. Protons and multiply charged ions then tend to diffuse into opposite directions so that no net charge is carried. Ions with Z>1 get enriched in the overdense regions, while protons diffuse out into regions of lower density. This leads to a second burst of nucleosynthesis in the overdense regions at T<20 keV, leading to enhanched destruction of deuterium and lithium. We find a region in the parameter space at 2.1E-10<eta<5.2E-10 where constraints 7Li/H<10^{-9.7} and D/H<10^{-4.4} are satisfied simultaneously.Comment: 9 pages, minor changes to match the PRD versio

    The Kr85 s-process Branching and the Mass of Carbon Stars

    Full text link
    We present new spectroscopic observations for a sample of C(N)-type red giants. These objects belong to the class of Asymptotic Giant Branch stars, experiencing thermal instabilities in the He-burning shell (thermal pulses). Mixing episodes called third dredge-up enrich the photosphere with newly synthesized C12 in the He-rich zone, and this is the source of the high observed ratio between carbon and oxygen (C/O > 1 by number). Our spectroscopic abundance estimates confirm that, in agreement with the general understanding of the late evolutionary stages of low and intermediate mass stars, carbon enrichment is accompanied by the appearance of s-process elements in the photosphere. We discuss the details of the observations and of the derived abundances, focusing in particular on rubidium, a neutron-density sensitive element, and on the s-elements Sr, Y and Zr belonging to the first s-peak. The critical reaction branching at Kr85, which determines the relative enrichment of the studied species, is discussed. Subsequently, we compare our data with recent models for s-processing in Thermally Pulsing Asymptotic Giant Branch stars, at metallicities relevant for our sample. A remarkable agreement between model predictions and observations is found. Thanks to the different neutron density prevailing in low and intermediate mass stars, comparison with the models allows us to conclude that most C(N) stars are of low mass (M < 3Mo). We also analyze the C12/C13 ratios measured, showing that most of them cannot be explained by canonical stellar models. We discuss how this fact would require the operation of an ad hoc additional mixing, currently called Cool Bottom Process, operating only in low mass stars during the first ascent of the red giant branch and, perhaps, also during the asymptotic giant branch.Comment: 54 pages + 6 figures + 6 tables. ApJ accepte

    Reconciling Present Neutrino Puzzles: Sterile Neutrinos as Mirror Neutrinos

    Full text link
    We suggest that recent neutrino puzzles that are the solar and atmospheric neutrino deficits as well as the possible neutrino oscillations reported by the LSND experiment and the possibility of massive neutrinos providing the hot component of the cosmological dark matter, can all be naturally explained by assuming existence of a mirror world described by an ``electroweak'' gauge symmetry [SU(2)×U(1)][SU(2)\times U(1)]', with the breaking scale larger by about factor of 30 than the scale of the standard SU(2)×U(1)SU(2)\times U(1) model. An interesting aspect of this model is that the sterile neutrinos arise from the hidden mirror sector of the theory and thus their lightness is more natural than in the usual neutrino mass scenarios. The needed pattern of the neutrino mass matrix in this model is obtained by assuming a conserved ZKM-type global lepton number Lˉ=Le+LμLτ\bar L=L_e+L_\mu-L_\tau, which is violated by Planck scale effects. One implication of our proposal is that bulk of the dark matter in the universe is a warm dark matter consisting of few KeV mass particles rather than the 100 GeV range particles of the currently popular cold dark matter scenarios.Comment: 10 pages, Latex, no figure

    Disappearing Dark Matter in Brane World Cosmology: New Limits on Noncompact Extra Dimensions

    Full text link
    We explore cosmological implications of dark matter as massive particles trapped on a brane embedded in a Randall-Sundrum noncompact higher dimension AdS5AdS_5 space. It is an unavoidable consequence of this cosmology that massive particles are metastable and can disappear into the bulk dimension. Here, we show that a massive dark matter particle (e.g. the lightest supersymmetric particle) is likely to have the shortest lifetime for disappearing into the bulk. We examine cosmological constraints on this new paradigm and show that disappearing dark matter is consistent (at the 95% confidence level) with all cosmological constraints, i.e. present observations of Type Ia supernovae at the highest redshift, trends in the mass-to-light ratios of galaxy clusters with redshift, the fraction of X-ray emitting gas in rich clusters, and the spectrum of power fluctuations in the cosmic microwave background. A best 2σ2 \sigma concordance region is identified corresponding to a mean lifetime for dark matter disappearance of 15Γ18015 \le \Gamma^{-1} \le 80 Gyr. The implication of these results for brane-world physics is discussed.Comment: 7 pages, 7 figures, new cosmological constraints added, accepted for publication in PR

    Peaks above the Harrison-Zel'dovich spectrum due to the Quark-Gluon to Hadron Transition

    Get PDF
    The quark-gluon to hadron transition affects the evolution of cosmological perturbations. If the phase transition is first order, the sound speed vanishes during the transition, and density perturbations fall freely. This distorts the primordial Harrison-Zel'dovich spectrum of density fluctuations below the Hubble scale at the transition. Peaks are produced, which grow at most linearly in wavenumber, both for the hadron-photon-lepton fluid and for cold dark matter. For cold dark matter which is kinetically decoupled well before the QCD transition clumps of masses below 1010M10^{-10} M_\odot are produced.Comment: Extended version, including evolution of density perturbations for a bag model and for a lattice QCD fit (3 new figures). Spectrum for bag model (old figure) is available in astro-ph/9611186. 9 pages RevTeX, uses epsf.sty, 3 PS figure

    IRAS08281-4850 and IRAS14325-6428: two A-type post-AGB stars with s-process enrichment

    Full text link
    One of the puzzling findings in the study of the chemical evolution of (post-)AGB stars is why very similar stars (in terms of metallicity, spectral type, infrared properties, etc...) show a very different photospheric composition. We aim at extending the still limited sample of s-process enriched post-AGB stars, in order to obtain a statistically large enough sample that allows us to formulate conclusions concerning the 3rd dredge-up occurrence. We selected two post-AGB stars on the basis of IR colours indicative of a past history of heavy mass loss: IRAS08281-4850 and IRAS14325-6428. They are cool sources in the locus of the Planetary Nebulae (PNe) in the IRAS colour-colour diagram. Abundances of both objects were derived for the first time on the basis of high-quality UVES and EMMI spectra, using a critically compiled line list with accurate log(gf) values, together with the latest Kurucz model atmospheres. Both objects have very similar spectroscopically defined effective temperatures of 7750-8000K. They are strongly carbon and s-process enriched, with a C/O ratio of 1.9 and 1.6, and an [ls/Fe] of +1.7 and +1.2, for IRAS08281 and IRAS14325 resp. Moreover, the spectral energy distributions (SEDs) point to heavy mass-loss during the preceding AGB phase. IRAS08281 and IRAS14325 are prototypical post-AGB objects in the sense that they show strong post 3rd dredge-up chemical enrichments. The neutron irradiation has been extremely efficient, despite the only mild sub-solar metallicity. This is not conform with the recent chemical models. The existence of very similar post-AGB stars without any enrichment emphasizes our poor knowledge of the details of the AGB nucleosynthesis and dredge-up phenomena. We call for a very systematic chemical study of all cool sources in the PN region of the IRAS colour-colour diagram.Comment: 8 pages, 6 figures, accepted by A&
    corecore